Smart contract vulnerability detection based on a semantic code structure and a self-designed neural network

计算机科学 脆弱性(计算) 编码(集合论) 抽象语法树 语法 人工智能 人工神经网络 树遍历 过程(计算) 树(集合论) 程序设计语言 机器学习 计算机安全 数学 数学分析 集合(抽象数据类型)
作者
Xiaojun Ren,Yongtang Wu,Jiaqing Li,Dongmin Hao,Muhammad Alam
出处
期刊:Computers & Electrical Engineering [Elsevier BV]
卷期号:109: 108766-108766 被引量:5
标识
DOI:10.1016/j.compeleceng.2023.108766
摘要

Smart contracts are riddled with vulnerabilities due to flaws in programming languages and the inexperience of developers, causing damage. Nonetheless, the current research on smart contract vulnerability detection is insufficient. In this study, we propose a novel approach, namely, Blass, based on a semantic code structure and a self-designed neural network. Blass constructs program slices with complete semantic structure information (CPSs) and uses an abstract syntax tree and a depth-first traversal algorithm to convert CPSs into code chains during the process of CPS vectorization, which increases its ability to express vulnerability features. Blass also uses a self-designed neural network, Bi-LSTM-Att, as the classification model, which introduces an attention mechanism to capture the key features of vulnerabilities and effectively achieve improved smart contract vulnerability detection performance. The CPSs and the Bi-LSTM-Att can improve the vulnerability detection effectiveness of Blass, and Blass can be applied to malicious contract detection with satisfactory precision, recall, and F1 values.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
NN发布了新的文献求助10
2秒前
负责玉米发布了新的文献求助10
3秒前
3秒前
lisa完成签到,获得积分10
4秒前
希望天下0贩的0应助Serena采纳,获得10
6秒前
可爱的函函应助Serena采纳,获得10
6秒前
LZNUDT发布了新的文献求助10
6秒前
852应助adazbd采纳,获得10
7秒前
8秒前
8秒前
Double_N发布了新的文献求助10
9秒前
10秒前
Lucas应助科研小能手采纳,获得30
10秒前
情怀应助LZNUDT采纳,获得10
11秒前
dongqing12311完成签到,获得积分10
11秒前
13秒前
大寒无雪发布了新的文献求助10
13秒前
啦啦啦发布了新的文献求助10
15秒前
Double_N完成签到,获得积分10
15秒前
16秒前
ZZY完成签到,获得积分20
17秒前
一二三发布了新的文献求助10
17秒前
18秒前
动漫大师发布了新的文献求助30
19秒前
19秒前
SHEYA完成签到,获得积分20
20秒前
ZZY发布了新的文献求助20
21秒前
Owen应助xiewuhua采纳,获得10
21秒前
22秒前
22秒前
22秒前
23秒前
打打应助Jason采纳,获得10
23秒前
辛苦打工人完成签到,获得积分10
24秒前
冰冰发布了新的文献求助10
24秒前
雪ノ下詩乃完成签到,获得积分10
24秒前
25秒前
TOKO完成签到,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800001
求助须知:如何正确求助?哪些是违规求助? 3345347
关于积分的说明 10324720
捐赠科研通 3061849
什么是DOI,文献DOI怎么找? 1680569
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763502