Clinical concept and relation extraction using prompt-based machine reading comprehension

概化理论 关系抽取 计算机科学 人工智能 机器学习 水准点(测量) 深度学习 变压器 学习迁移 自然语言处理 信息抽取 统计 数学 地理 大地测量学 电压 物理 量子力学
作者
Peng Cheng,Xi Yang,Zehao Yu,Jiang Bian,William R. Hogan,Yonghui Wu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:30 (9): 1486-1493 被引量:19
标识
DOI:10.1093/jamia/ocad107
摘要

Abstract Objective To develop a natural language processing system that solves both clinical concept extraction and relation extraction in a unified prompt-based machine reading comprehension (MRC) architecture with good generalizability for cross-institution applications. Methods We formulate both clinical concept extraction and relation extraction using a unified prompt-based MRC architecture and explore state-of-the-art transformer models. We compare our MRC models with existing deep learning models for concept extraction and end-to-end relation extraction using 2 benchmark datasets developed by the 2018 National NLP Clinical Challenges (n2c2) challenge (medications and adverse drug events) and the 2022 n2c2 challenge (relations of social determinants of health [SDoH]). We also evaluate the transfer learning ability of the proposed MRC models in a cross-institution setting. We perform error analyses and examine how different prompting strategies affect the performance of MRC models. Results and Conclusion The proposed MRC models achieve state-of-the-art performance for clinical concept and relation extraction on the 2 benchmark datasets, outperforming previous non-MRC transformer models. GatorTron-MRC achieves the best strict and lenient F1-scores for concept extraction, outperforming previous deep learning models on the 2 datasets by 1%–3% and 0.7%–1.3%, respectively. For end-to-end relation extraction, GatorTron-MRC and BERT-MIMIC-MRC achieve the best F1-scores, outperforming previous deep learning models by 0.9%–2.4% and 10%–11%, respectively. For cross-institution evaluation, GatorTron-MRC outperforms traditional GatorTron by 6.4% and 16% for the 2 datasets, respectively. The proposed method is better at handling nested/overlapped concepts, extracting relations, and has good portability for cross-institute applications. Our clinical MRC package is publicly available at https://github.com/uf-hobi-informatics-lab/ClinicalTransformerMRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moon发布了新的文献求助20
刚刚
浮游应助slx采纳,获得10
刚刚
淡然绾绾发布了新的文献求助10
1秒前
夜神月发布了新的文献求助10
1秒前
毛儿豆儿完成签到,获得积分10
2秒前
3秒前
李庚龙发布了新的文献求助20
4秒前
7秒前
7秒前
electricelectric应助奋斗惮采纳,获得30
8秒前
zzz完成签到 ,获得积分10
9秒前
笨笨善若完成签到,获得积分10
13秒前
13秒前
14秒前
大胆隶发布了新的文献求助10
14秒前
李健应助柠栀采纳,获得10
15秒前
Feng完成签到 ,获得积分10
16秒前
16秒前
yiran发布了新的文献求助10
17秒前
17秒前
红叶完成签到,获得积分10
17秒前
浮游应助zhangzhiwei采纳,获得10
18秒前
LIN发布了新的文献求助10
19秒前
大个应助砍柴少年采纳,获得10
19秒前
135完成签到 ,获得积分10
20秒前
nihao发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
21秒前
23秒前
科研小白发布了新的文献求助10
23秒前
24秒前
24秒前
科研小白完成签到,获得积分10
25秒前
拓片发布了新的文献求助10
25秒前
轩辕山槐完成签到,获得积分10
25秒前
26秒前
28秒前
李健的粉丝团团长应助FLO采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309595
求助须知:如何正确求助?哪些是违规求助? 4454149
关于积分的说明 13859390
捐赠科研通 4342109
什么是DOI,文献DOI怎么找? 2384337
邀请新用户注册赠送积分活动 1378821
关于科研通互助平台的介绍 1346965