Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:287: 113452-113452 被引量:67
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的凝冬关注了科研通微信公众号
刚刚
阿金完成签到,获得积分10
1秒前
sophieCCM0302完成签到,获得积分10
2秒前
pluto应助running采纳,获得10
5秒前
nczpf2010完成签到,获得积分10
5秒前
5秒前
英俊的铭应助震动的曲奇采纳,获得10
6秒前
赵雨轩完成签到 ,获得积分10
8秒前
能干太清完成签到,获得积分10
9秒前
aaaa发布了新的文献求助10
10秒前
11秒前
挽风风风风完成签到,获得积分10
14秒前
研友_VZG7GZ应助杨伊森采纳,获得10
15秒前
15秒前
w王w发布了新的文献求助10
15秒前
涵泽发布了新的文献求助10
16秒前
阳光的蜜蜂啊完成签到,获得积分20
16秒前
子明完成签到 ,获得积分10
16秒前
18秒前
18秒前
19秒前
远志发布了新的文献求助10
21秒前
17完成签到 ,获得积分10
22秒前
杨杨杨完成签到,获得积分10
22秒前
23秒前
李健应助阳光的蜜蜂啊采纳,获得10
23秒前
zijinbeier完成签到,获得积分10
24秒前
冰山未闯完成签到,获得积分10
25秒前
edtaa完成签到 ,获得积分10
25秒前
斯寜应助人间月色采纳,获得20
26秒前
我是催化剂完成签到,获得积分20
27秒前
chezi发布了新的文献求助30
28秒前
薛定谔的小猴子完成签到,获得积分10
28秒前
科研通AI5应助ZBY采纳,获得10
29秒前
李健应助丰富不惜采纳,获得10
29秒前
Lensin完成签到 ,获得积分10
30秒前
QQ完成签到 ,获得积分10
31秒前
31秒前
32秒前
王先生发布了新的文献求助30
33秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843