Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzz完成签到 ,获得积分10
刚刚
刚刚
阿浮发布了新的文献求助10
刚刚
酷炫的阑悦完成签到,获得积分20
1秒前
勤恳惮发布了新的文献求助30
1秒前
3秒前
鱼罐罐罐头完成签到,获得积分10
4秒前
4秒前
anen完成签到,获得积分10
5秒前
安详的嵩完成签到 ,获得积分10
5秒前
YWXO发布了新的文献求助10
5秒前
5秒前
6秒前
情怀应助如风随水采纳,获得10
6秒前
翻斗花园发布了新的文献求助10
8秒前
8秒前
Steve发布了新的文献求助10
8秒前
10秒前
菜菜完成签到,获得积分20
10秒前
Owen应助满满采纳,获得10
11秒前
共享精神应助TY采纳,获得10
11秒前
ABC完成签到,获得积分20
11秒前
luoshiyi完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
丘比特应助黄超明采纳,获得10
13秒前
15秒前
隋菿99发布了新的文献求助10
15秒前
小爽发布了新的文献求助20
16秒前
Steve完成签到,获得积分20
18秒前
华仔应助爱听歌依波采纳,获得10
18秒前
朴素的无招完成签到,获得积分10
18秒前
19秒前
19秒前
如风随水发布了新的文献求助10
20秒前
CodeCraft应助ABC采纳,获得10
20秒前
大个应助even采纳,获得10
21秒前
22秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4285127
求助须知:如何正确求助?哪些是违规求助? 3812616
关于积分的说明 11942594
捐赠科研通 3458993
什么是DOI,文献DOI怎么找? 1897108
邀请新用户注册赠送积分活动 945701
科研通“疑难数据库(出版商)”最低求助积分说明 849410