Semantic segmentation of water bodies in very high-resolution satellite and aerial images

遥感 卫星 分割 卷积神经网络 计算机科学 卫星图像 人工智能 光谱带 模式识别(心理学) 地质学 工程类 航空航天工程
作者
Marc Wieland,Sandro Martinis,Ralph Kiefl,Veronika Gstaiger
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:287: 113452-113452 被引量:103
标识
DOI:10.1016/j.rse.2023.113452
摘要

This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Brief完成签到,获得积分10
1秒前
wsqg123完成签到,获得积分10
1秒前
1秒前
鹏举瞰冷雨完成签到,获得积分10
2秒前
Amikacin完成签到,获得积分10
3秒前
乘舟江行完成签到,获得积分10
3秒前
蜀山刀客完成签到,获得积分10
5秒前
魔幻千秋完成签到,获得积分0
6秒前
jiangqin123完成签到 ,获得积分10
6秒前
jixuchance完成签到,获得积分10
7秒前
付艳完成签到,获得积分10
7秒前
aaaaaa完成签到,获得积分10
11秒前
风不尽,树不静完成签到 ,获得积分0
11秒前
现代风格完成签到,获得积分10
14秒前
磊2024完成签到,获得积分10
14秒前
研友_Z1eDgZ完成签到,获得积分10
14秒前
flytime1115完成签到,获得积分10
14秒前
peipei完成签到,获得积分10
15秒前
111完成签到,获得积分10
16秒前
斯奈克完成签到,获得积分10
18秒前
carly完成签到 ,获得积分10
18秒前
默默孱完成签到 ,获得积分10
18秒前
AURORA丶完成签到 ,获得积分10
19秒前
Running完成签到 ,获得积分10
20秒前
54zxy完成签到,获得积分10
21秒前
Ice_zhao完成签到 ,获得积分10
22秒前
阡陌完成签到,获得积分10
23秒前
savesunshine1022完成签到,获得积分10
24秒前
聪明小丸子完成签到,获得积分10
24秒前
27秒前
爱蕊咖完成签到 ,获得积分10
28秒前
zokor完成签到 ,获得积分10
28秒前
熙梓日记完成签到,获得积分10
28秒前
遇见完成签到 ,获得积分10
31秒前
背后访风完成签到 ,获得积分10
32秒前
姚琛完成签到 ,获得积分10
33秒前
坚定背包完成签到,获得积分10
33秒前
杨一完成签到 ,获得积分10
34秒前
标致雁发布了新的文献求助10
34秒前
zj完成签到,获得积分10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491137
关于积分的说明 11059098
捐赠科研通 3222085
什么是DOI,文献DOI怎么找? 1780839
邀请新用户注册赠送积分活动 865866
科研通“疑难数据库(出版商)”最低求助积分说明 800083