Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network

角动量 物理 卷积神经网络 湍流 旋涡 光学 相(物质) 高斯光束 光的轨道角动量 梁(结构) 人工智能 计算机科学 总角动量 量子力学 热力学
作者
Xiaoji Li,Leiming Sun,Jiemei Huang,Fanze Zeng
出处
期刊:Sensors [MDPI AG]
卷期号:23 (2): 971-971 被引量:15
标识
DOI:10.3390/s23020971
摘要

In underwater wireless optical communication (UWOC), a vortex beam carrying orbital angular momentum has a spatial spiral phase distribution, which provides spatial freedom for UWOC and, as a new information modulation dimension resource, it can greatly improve channel capacity and spectral efficiency. In a case of the disturbance of a vortex beam by ocean turbulence, where a Laguerre–Gaussian (LG) beam carrying orbital angular momentum (OAM) is damaged by turbulence and distortion, which affects OAM pattern recognition, and the phase feature of the phase map not only has spiral wavefront but also phase singularity feature, the convolutional neural network (CNN) model can effectively extract the information of the distorted OAM phase map to realize the recognition of dual-mode OAM and single-mode OAM. The phase map of the Laguerre–Gaussian beam passing through ocean turbulence was used as a dataset to simulate and analyze the OAM recognition effect during turbulence caused by different temperature ratios and salinity. The results showed that, during strong turbulence Cn2=1.0×10−13K2m−2/3, when different ω = −1.75, the recognition rate of dual-mode OAM (ℓ = ±1~±5, ±1~±6, ±1~±7, ±1~±8, ±1~±9, ±1~±10) had higher recognition rates of 100%, 100%, 100%, 100%, 98.89%, and 98.67% and single-mode OAM (ℓ = 1~5, 1~6, 1~7, 1~8, 1~9, 1~10) had higher recognition rates of 93.33%, 92.77%, 92.33%, 90%, 87.78%, and 84%, respectively. With the increase in ω, the recognition accuracy of the CNN model will gradually decrease, and in a fixed case, the dual-mode OAM has stronger anti-interference ability than single-mode OAM. These results may provide a reference for optical communication technologies that implement high-capacity OAM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
k20241217完成签到,获得积分10
2秒前
潺潺流水完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
丁义博发布了新的文献求助10
5秒前
6秒前
初衷未央发布了新的文献求助20
6秒前
8秒前
喵喵完成签到 ,获得积分10
8秒前
8秒前
NexusExplorer应助xtc采纳,获得10
9秒前
逐梦科研圈完成签到,获得积分10
9秒前
看见了紫荆花完成签到 ,获得积分10
10秒前
10秒前
11秒前
Maestro_S应助爱吃蓝莓果采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
高高的元容完成签到,获得积分10
12秒前
医学小渣渣完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
微光吹过薄荷绿完成签到 ,获得积分10
13秒前
12345678发布了新的文献求助10
14秒前
14秒前
14秒前
JamesPei应助lllllyyyyy采纳,获得30
14秒前
CC发布了新的文献求助10
14秒前
15秒前
16秒前
fantasy发布了新的文献求助10
19秒前
仄言发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648