Physics-driven digital twin model and CNN-GRU network for remaining useful life prediction in rolling bearings

计算机科学 计算机辅助设计 人工智能 机械工程 工程制图 工程类
作者
Zengqiang Cao,Jianxing Zhou,Ke Xiao,Yadong Zhou,Xiang Fei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (9): 096105-096105
标识
DOI:10.1088/1361-6501/adfcf9
摘要

Abstract In order to enhance the accuracy and adaptability of remaining useful life (RUL) prediction for rolling bearings, this paper proposes a hybrid prediction framework that integrates digital twin (DT) modeling with a CNN-GRU deep learning architecture. First, the discrete wavelet transform is applied to denoise the measured vibration signals, and 13 multi-dimensional health indicators are extracted to characterize the bearing degradation features, whose relevance is further assessed using feature sensitivity and redundancy analysis. Subsequently, a bearing dynamic model and defect evolution model are established based on Hertzian contact theory, and the Snow Goose Algorithm is introduced for dynamic model updating, enabling lifecycle estimation of defect size and generating full-lifecycle simulated vibration signals. In the prediction stage, a CNN-GRU model is constructed, where the CNN convolutional layers extract local spatial features and the GRU units capture long-term dependencies in the time series, thereby enabling deep modeling of the bearing degradation process and RUL prediction. Experiments are conducted on the XJTU-SY bearing accelerated life dataset under three different data scenarios: ‘digital twin data only’, ‘hybrid data’, and ‘measured data only’. The results show that the proposed CNN-GRU model outperforms conventional CNN and GRU models across all error metrics. It effectively addresses the limitations of traditional methods under conditions of limited full-lifecycle bearing data. It provides reliable technical support for the intelligent maintenance and optimization of rolling bearings. The effectiveness and engineering potential of the DT-assisted RUL prediction method are thoroughly validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的冰旋完成签到,获得积分10
1秒前
2秒前
2秒前
木木发布了新的文献求助10
3秒前
迅速采波发布了新的文献求助10
3秒前
jfz完成签到,获得积分10
3秒前
研友_ZMH完成签到,获得积分10
3秒前
鱼维尼发布了新的文献求助10
4秒前
5秒前
6秒前
卤西瓜的科研蛋完成签到,获得积分10
6秒前
yyd完成签到 ,获得积分10
7秒前
ky发布了新的文献求助10
7秒前
ff发布了新的文献求助10
7秒前
7秒前
占曼荷发布了新的文献求助10
10秒前
英姑应助李海平采纳,获得10
11秒前
11秒前
wisdom完成签到,获得积分10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
啃猫爪发布了新的文献求助10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297298
求助须知:如何正确求助?哪些是违规求助? 4446207
关于积分的说明 13838799
捐赠科研通 4331371
什么是DOI,文献DOI怎么找? 2377578
邀请新用户注册赠送积分活动 1372834
关于科研通互助平台的介绍 1338403