AI-driven innovation in antibody-drug conjugate design

结合 抗体-药物偶联物 药品 抗体 计算机科学 医学 数学 药理学 单克隆抗体 免疫学 数学分析
作者
Heather A. Noriega,Xiang Simon Wang
出处
期刊:Frontiers in drug discovery [Frontiers Media SA]
卷期号:5 被引量:4
标识
DOI:10.3389/fddsv.2025.1628789
摘要

Antibody-drug conjugates (ADCs) represent a mechanistically defined class of targeted therapeutics that combine monoclonal antibodies with cytotoxic payloads to achieve selective delivery to antigen-expressing carcinoma cells. Conventional ADC development has primarily relied on empirical screening and structure-based design, often limited by incomplete structural information, non-systematic linker–payload selection, and constraints in experimental throughput. Computational methods, including artificial intelligence and machine learning (AI/ML) are increasingly being integrated into ADC discovery and optimization workflows (i.e., AI-driven ADC Design) to address these limitations. This review is organized into six sections: (1) the progression from traditional modeling approaches to AI-driven design of individual ADC components; (2) the application of deep learning (DL) to antibody structure prediction and identification of optimal conjugation sites; (3) the use of AI/ML models for forecasting pharmacokinetic properties and toxicity profiles; (4) emerging generative algorithms for antibody sequence diversification and affinity optimization; (5) case studies demonstrating the integration of computational tools with experimental pipelines, including systems that link in silico predictions to high-throughput validation; and (6) persistent challenges, including data sparsity, model interpretability, validation complexity, and regulatory considerations. The review concludes with a discussion of future directions, emphasizing the role of multimodal data integration, reinforcement learning (RL), and closed-loop design frameworks to support iterative ADC development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
juzi完成签到,获得积分10
1秒前
李健应助yqsf789采纳,获得10
1秒前
迅速的小蚂蚁完成签到 ,获得积分10
1秒前
xuan发布了新的文献求助10
2秒前
2秒前
yang发布了新的文献求助10
3秒前
3秒前
开放的无声完成签到,获得积分10
3秒前
5秒前
6秒前
谢a完成签到,获得积分10
6秒前
APRIL发布了新的文献求助10
7秒前
HDY发布了新的文献求助20
8秒前
左浩龙发布了新的文献求助10
9秒前
难过板栗发布了新的文献求助10
9秒前
Qenyo发布了新的文献求助10
10秒前
10秒前
wxyshare应助GGBOND采纳,获得10
11秒前
12秒前
健壮鸡翅完成签到,获得积分10
12秒前
13秒前
徐徐完成签到,获得积分10
15秒前
lhlhl完成签到,获得积分10
17秒前
xuan完成签到,获得积分20
17秒前
荷兰香猪发布了新的文献求助10
17秒前
18秒前
浮游应助stable采纳,获得10
18秒前
18秒前
hy完成签到 ,获得积分10
19秒前
20秒前
栗子完成签到,获得积分10
21秒前
panghu233发布了新的文献求助10
21秒前
科研通AI5应助Leslie采纳,获得60
22秒前
Hello应助凝安采纳,获得10
22秒前
苹果完成签到,获得积分10
22秒前
8R60d8应助王怜花采纳,获得10
23秒前
de关闭了de文献求助
23秒前
隐形曼青应助佚名123采纳,获得10
24秒前
科研通AI5应助Lenny采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194866
求助须知:如何正确求助?哪些是违规求助? 4377064
关于积分的说明 13631202
捐赠科研通 4232285
什么是DOI,文献DOI怎么找? 2321532
邀请新用户注册赠送积分活动 1319647
关于科研通互助平台的介绍 1270054