催化作用
氧化还原
点击化学
材料科学
再分配(选举)
化学工程
电子转移
三吡啶
纳米技术
光化学
化学
无机化学
高分子化学
有机化学
金属
工程类
政治
冶金
法学
政治学
作者
Feifei Wang,Runlin Ma,Zihui Chen,Tianyu Yin,Zhijie Yan,Sijia Chi,Menggai Jiao,Chao Yang,Quan‐Hong Yang
标识
DOI:10.1002/adma.202511980
摘要
Zinc-iodine (Zn-I2) batteries are promising candidates for high-performance and cost-effective energy storage, yet their practical deployment is hindered by severe polyiodide shuttling and limited redox kinetics. To overcome this bottleneck at its core, a molecular-level fixation catalysis strategy-inspired by click chemistry principles is presented-that transcends the limitations of conventional adsorption and heterogeneous catalysis. Inspired by the selectivity and efficiency of click reactions, a Cp(Fe(CO)2)2-derived molecular catalyst (Fe-Cp) is designed that forms directional and robust Fe─I coordination bonds, locking iodine species into stable Fe-CpI complexes. Beyond anchoring, Fe-Cp uniquely enables axial electron transfer, facilitating reversible charge redistribution and dynamic iodine redox conversion beyond the reach of surface-confined systems. This dual-function mechanism not only suppresses the polyiodide shuttle but also dynamically regulates the electron redistribution at the catalytic interface, fundamentally enhancing reaction kinetics. Benefiting from this design, the Zn-I2 batteries deliver an exceptional cycling lifespan of 63 000 cycles at 20 A g-1 with 95% capacity retention and ≈100% Coulombic efficiency. Remarkably, even under a high mass loading of 20 mg cm-2 in pouch Zn-I2 cells, the system maintains a high areal capacity of 3.3 mAh cm-2 and ≈100% capacity retention even after 2000 cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI