Fully Automated Image-Based Multiplexing of Serial PET/CT Imaging for Facilitating Comprehensive Disease Phenotyping

图像配准 计算机科学 人工智能 仿射变换 分割 计算机视觉 相似性(几何) 模式识别(心理学) Sørensen–骰子系数 核医学 图像分割 医学 图像(数学) 数学 纯数学
作者
Lalith Kumar Shiyam Sundar,Sebastian Gutschmayer,Manuel Melo Pires,Daria Ferrara,Thu Hien Nguyen,Yasser G. Abdelhafez,Benjamin A. Spencer,Simon R. Cherry,Ramsey D. Badawi,David Kersting,Wolfgang P. Fendler,Moon Kim,Martin Lyngby Lassen,Philip Hasbak,Fabian Schmidt,Pia Linder,Xingyu Mu,Zewen Jiang,Elisabetta Abenavoli,Roberto Sciagrà
出处
期刊:Journal of nuclear medicine [Society of Nuclear Medicine]
卷期号:66 (11): 1818-1826 被引量:1
标识
DOI:10.2967/jnumed.125.269688
摘要

Combined PET/CT imaging provides critical insights into both anatomic and molecular processes, yet traditional single-tracer approaches limit multidimensional disease phenotyping; to address this, we developed the PET Unified Multitracer Alignment (PUMA) framework-an open-source, postprocessing tool that multiplexes serial PET/CT scans for comprehensive voxelwise tissue characterization. Methods: PUMA utilizes artificial intelligence-based CT segmentation from multiorgan objective segmentation to generate multilabel maps of 24 body regions, guiding a 2-step registration: affine alignment followed by symmetric diffeomorphic registration. Tracer images are then normalized and assigned to red-green-blue channels for simultaneous visualization of up to 3 tracers. The framework was evaluated on longitudinal PET/CT scans from 114 subjects across multiple centers and vendors. Rigid, affine, and deformable registration methods were compared for optimal coregistration. Performance was assessed using the Dice similarity coefficient for organ alignment and absolute percentage differences in organ intensity and tumor SUVmean Results: Deformable registration consistently achieved superior alignment, with Dice similarity coefficient values exceeding 0.90 in 60% of organs while maintaining organ intensity differences below 3%; similarly, SUVmean differences for tumors were minimal at 1.6% ± 0.9%, confirming that PUMA preserves quantitative PET data while enabling robust spatial multiplexing. Conclusion: PUMA provides a vendor-independent solution for postacquisition multiplexing of serial PET/CT images, integrating complementary tracer data voxelwise into a composite image without modifying clinical protocols. This enhances multidimensional disease phenotyping and supports better diagnostic and therapeutic decisions using serial multitracer PET/CT imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李狗蛋完成签到 ,获得积分10
刚刚
1秒前
1秒前
汉堡包应助Swj采纳,获得10
1秒前
科研通AI6应助liang2508采纳,获得10
2秒前
敏敏发布了新的文献求助10
2秒前
急于学习发布了新的文献求助10
3秒前
3秒前
科研通AI6应助杨安安采纳,获得10
4秒前
科研通AI6应助落后尔容采纳,获得10
4秒前
所所应助guard采纳,获得10
4秒前
orixero应助挖井的人采纳,获得10
4秒前
可爱的函函应助Silole采纳,获得10
4秒前
柯柯完成签到 ,获得积分10
5秒前
xmyxmy发布了新的文献求助10
6秒前
TTTTT发布了新的文献求助10
6秒前
所所应助Diego采纳,获得10
7秒前
桐桐应助Diego采纳,获得10
7秒前
邹雄辉完成签到,获得积分10
8秒前
科研通AI6应助zsp采纳,获得10
9秒前
Lucas应助Sunny采纳,获得10
9秒前
qxy完成签到 ,获得积分10
9秒前
10秒前
归尘发布了新的文献求助10
10秒前
10秒前
bobo完成签到,获得积分10
11秒前
13秒前
whw完成签到,获得积分20
13秒前
所所应助西厢张生采纳,获得10
13秒前
淡定的初夏给遢霧的求助进行了留言
14秒前
exccc发布了新的文献求助20
15秒前
16秒前
阔达雨泽完成签到,获得积分10
16秒前
17秒前
17秒前
洪晖阳完成签到,获得积分10
17秒前
科研通AI2S应助莫三颜采纳,获得10
17秒前
科研通AI6应助liang2508采纳,获得10
19秒前
bobo发布了新的文献求助10
19秒前
19秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964