Fully Automated Image-Based Multiplexing of Serial PET/CT Imaging for Facilitating Comprehensive Disease Phenotyping

图像配准 计算机科学 人工智能 仿射变换 分割 计算机视觉 相似性(几何) 模式识别(心理学) Sørensen–骰子系数 核医学 图像分割 医学 图像(数学) 数学 纯数学
作者
Lalith Kumar Shiyam Sundar,Sebastian Gutschmayer,Manuel Melo Pires,Daria Ferrara,Thu Hien Nguyen,Yasser G. Abdelhafez,Benjamin A. Spencer,Simon R. Cherry,Ramsey D. Badawi,David Kersting,Wolfgang P. Fendler,Moon Kim,Martin Lyngby Lassen,Philip Hasbak,Fabian Schmidt,Pia Linder,Xingyu Mu,Zewen Jiang,Elisabetta Abenavoli,Roberto Sciagrà
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:: jnumed.125.269688-jnumed.125.269688
标识
DOI:10.2967/jnumed.125.269688
摘要

Combined PET/CT imaging provides critical insights into both anatomic and molecular processes, yet traditional single‐tracer approaches limit multidimensional disease phenotyping; to address this, we developed the PET Unified Multitracer Alignment (PUMA) framework—an open‐source, postprocessing tool that multiplexes serial PET/CT scans for comprehensive voxelwise tissue characterization. Methods: PUMA utilizes artificial intelligence–based CT segmentation from multiorgan objective segmentation to generate multilabel maps of 24 body regions, guiding a 2-step registration: affine alignment followed by symmetric diffeomorphic registration. Tracer images are then normalized and assigned to red–green–blue channels for simultaneous visualization of up to 3 tracers. The framework was evaluated on longitudinal PET/CT scans from 114 subjects across multiple centers and vendors. Rigid, affine, and deformable registration methods were compared for optimal coregistration. Performance was assessed using the Dice similarity coefficient for organ alignment and absolute percentage differences in organ intensity and tumor SUVmean. Results: Deformable registration consistently achieved superior alignment, with Dice similarity coefficient values exceeding 0.90 in 60% of organs while maintaining organ intensity differences below 3%; similarly, SUVmean differences for tumors were minimal at 1.6% ± 0.9%, confirming that PUMA preserves quantitative PET data while enabling robust spatial multiplexing. Conclusion: PUMA provides a vendor-independent solution for postacquisition multiplexing of serial PET/CT images, integrating complementary tracer data voxelwise into a composite image without modifying clinical protocols. This enhances multidimensional disease phenotyping and supports better diagnostic and therapeutic decisions using serial multitracer PET/CT imaging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangnan发布了新的文献求助10
1秒前
糯米糍完成签到,获得积分10
2秒前
CodeCraft应助聪慧的怀绿采纳,获得10
2秒前
阿喵完成签到,获得积分10
4秒前
6秒前
浮游应助CC采纳,获得10
9秒前
素素素完成签到 ,获得积分10
9秒前
科研通AI5应助冷酷傲易采纳,获得10
12秒前
jisuanwuli发布了新的文献求助10
13秒前
诚心文博完成签到,获得积分10
14秒前
积极的夜蕾完成签到,获得积分10
15秒前
把饭拼好给你完成签到 ,获得积分10
15秒前
18秒前
Ronin完成签到 ,获得积分10
19秒前
sabrina完成签到,获得积分10
19秒前
小范完成签到 ,获得积分10
22秒前
冷酷傲易发布了新的文献求助10
23秒前
劉平果完成签到 ,获得积分10
24秒前
Yule完成签到,获得积分10
25秒前
ChatGPT发布了新的文献求助10
27秒前
所所应助执着紫翠采纳,获得10
32秒前
忆鸣完成签到,获得积分10
33秒前
Kasom发布了新的文献求助10
33秒前
Owen应助alex采纳,获得10
35秒前
38秒前
FF关注了科研通微信公众号
40秒前
43秒前
46秒前
46秒前
李健应助禾木采纳,获得20
46秒前
47秒前
48秒前
48秒前
51秒前
alex发布了新的文献求助10
52秒前
执着紫翠发布了新的文献求助10
52秒前
科目三应助高高一鸣采纳,获得10
54秒前
54秒前
HCT完成签到,获得积分10
57秒前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4784198
求助须知:如何正确求助?哪些是违规求助? 4111669
关于积分的说明 12720448
捐赠科研通 3836302
什么是DOI,文献DOI怎么找? 2115309
邀请新用户注册赠送积分活动 1138330
关于科研通互助平台的介绍 1024229