原子层沉积
氧化铝
图层(电子)
铝
等离子体
材料科学
沉积(地质)
管(容器)
氧化铝
氧化物
化学工程
纳米技术
复合材料
冶金
物理
地质学
古生物学
工程类
量子力学
沉积物
作者
Christina Hollemann,Byungsul Min,V.X. Nguyen,Thomas Pernau,Daniela Seiffert,Helge Haverkamp,Rolf Brendel,Henning Schulte‐Huxel
标识
DOI:10.1002/solr.202500510
摘要
Ultraviolet (UV)‐induced degradation is a critical issue for modern photovoltaic (PV) technologies such as passivated emitter and rear cell (PERC), tunnel oxide‐passivated contact (TOPCon), and heterojunction (HJT) cell concepts. This study compares the stability against UV radiation of AlO x /SiN y stacks on mini‐modules with p‐type back junction solar cells. Our cells have a nondiffused textured front surface passivated with an AlO x /SiN y layer stack and feature passivating polysilicon on oxide rear contacts. We compare plasma‐enhanced chemical vapor deposition (PECVD) and plasma‐enhanced atomic layer deposition (PEALD) processes for the deposition of AlO x layers using the same tube‐type deposition system. After a UV dose of 146 kWh/m 2 using broadband UV lamps, modules with PECVD‐AlO x exhibit an efficiency loss of up to 27% while those with PEALD‐AlO x show minimal degradation of 2.5%. This comparison proves that the superior UV stability is achieved with the tube‐type PEALD technique. Our findings thus show how UV stability can be improved without extra equipment dedicated solely to depositing ALD‐AlO x and without UV absorbing or down converting encapsulants.
科研通智能强力驱动
Strongly Powered by AbleSci AI