Learning Neighbor User Intention on User-Item Interaction Graphs for Better Sequential Recommendation

计算机科学 人机交互 万维网 情报检索
作者
Mei Yu,Kun Zhu,Mankun Zhao,Jian Yu,Tianyi Xu,Di Jin,Xuewei Li,Ruiguo Yu
出处
期刊:ACM Transactions on The Web [Association for Computing Machinery]
卷期号:18 (2): 1-28 被引量:1
标识
DOI:10.1145/3580520
摘要

The task of sequential recommendation aims to predict a user’s preference by analyzing the user’s historical behaviours. Existing methods model item transitions through leveraging sequential patterns. However, they mainly consider the target user’s behaviours and dynamic characteristics, while often ignoring high-order collaborative connections when modelling user preferences. Some recent works try to use graph-based methods to introduce high-order collaborative signals for sequential recommendation. However, these methods are flawed by two problems: the sequential patterns cannot be effectively mined and their way of introducing high-order collaborative signals is not suitable for sequential recommendation. To address these problems, we propose to fully exploit sequence features and model high-order collaborative signals for sequential recommendation. We propose a N eighbor user I ntention-based S equential Rec ommender (NISRec), which utilizes the intentions of high-order connected neighbor users as high-order collaborative signals in order to improve recommendation performance for the target user. The NISRec contains two main modules: the neighbor user intention embedding module (NIE) and the fusion module. The NIE module describes both the long-term and short-term intentions of neighbor users and aggregates them separately. The fusion module uses these two types of aggregated intentions to model high-order collaborative signals in both the embedding process and user preference modelling phase for recommendations of the target user. Experimental results show that our new approach outperforms the state-of-the-art methods on both sparse and dense datasets. Extensive studies further show the effectiveness of the diverse neighbor intentions introduced by the NISRec.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zbr发布了新的文献求助20
刚刚
张超超发布了新的文献求助10
刚刚
马界泡泡发布了新的文献求助10
刚刚
1秒前
angelinazh完成签到,获得积分10
1秒前
3秒前
3秒前
科研通AI5应助初学小廖采纳,获得10
4秒前
一路畅通accept完成签到,获得积分10
5秒前
大碗应助虚幻的若雁采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
开放剑鬼完成签到,获得积分10
6秒前
jsh发布了新的文献求助10
7秒前
7秒前
7秒前
清秀灵薇完成签到,获得积分10
7秒前
angelinazh发布了新的文献求助10
7秒前
小伙子发布了新的文献求助30
7秒前
8秒前
9秒前
Fe完成签到,获得积分20
9秒前
vv完成签到 ,获得积分10
10秒前
irony完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
程瑞哲完成签到,获得积分10
12秒前
正在获取昵称中...完成签到,获得积分10
12秒前
独特的鹅完成签到,获得积分10
13秒前
情怀应助基一啊佳采纳,获得10
13秒前
14秒前
xxxx发布了新的文献求助10
14秒前
水草帽发布了新的文献求助10
15秒前
15秒前
Breeze完成签到 ,获得积分10
15秒前
vv关注了科研通微信公众号
16秒前
上官若男应助Sunshine采纳,获得10
16秒前
lxjjj发布了新的文献求助10
17秒前
科研通AI5应助典雅的俊驰采纳,获得10
17秒前
冻结完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011650
求助须知:如何正确求助?哪些是违规求助? 4253023
关于积分的说明 13252960
捐赠科研通 4055663
什么是DOI,文献DOI怎么找? 2218299
邀请新用户注册赠送积分活动 1227935
关于科研通互助平台的介绍 1150088