亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Geographical origin identification of Chinese red wines using ultraviolet-visible spectroscopy coupled with machine learning techniques

葡萄酒 主成分分析 人工智能 线性判别分析 泰勒瓦 支持向量机 模式识别(心理学) 偏最小二乘回归 数学 计算机科学 机器学习 化学 食品科学
作者
Hui‐Wen Gu,Huihui Zhou,Yi Lv,Qiao Wu,Yuan Pan,Zhi-Xin Peng,Xiaohua Zhang,Xiaoli Yin
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:119: 105265-105265 被引量:32
标识
DOI:10.1016/j.jfca.2023.105265
摘要

Identifying geographical origins of red wines produced in specific regions is of great importance, since the geographical origins of wine influence its quality and price greatly. In this study, the feasibility of UV-Vis spectroscopy was evaluated for the classification of Chinese red wine samples according to their geographical origins, using principal component analysis (PCA) and two machine learning techniques: orthogonal partial least squares-discriminant analysis (OPLS-DA) and support vector machine (SVM). The PCA analysis indicated that there are differences in the chemical composition between wine samples from three different origins and inferred the chemical compounds responsible for the discrimination between wine geographical origins. Furthermore, OPLS-DA and SVM models were established to predict the class membership of wine samples from three different origins and results showed that both models can provide correct recognition rates of 100 % for wine samples in training and prediction sets. This study demonstrated that the combination of UV-Vis spectroscopy with machine learning-based modeling has the potential to be a simple, fast and low-cost tool for the routine identification of geographical origins of Chinese red wines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知夏完成签到,获得积分10
7秒前
无私元芹发布了新的文献求助10
9秒前
无私元芹完成签到,获得积分10
26秒前
王晓宇完成签到,获得积分10
51秒前
好好学习发布了新的文献求助30
1分钟前
思源应助叽叽采纳,获得10
1分钟前
1分钟前
靓丽的访曼完成签到,获得积分20
2分钟前
2分钟前
田様应助朴素的山蝶采纳,获得30
2分钟前
2分钟前
叽叽发布了新的文献求助10
2分钟前
2分钟前
fanssw完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
钉钉完成签到 ,获得积分10
2分钟前
wuwr3发布了新的文献求助10
2分钟前
3分钟前
Ava应助ClaudeLvan采纳,获得10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
puzhongjiMiQ发布了新的文献求助10
3分钟前
3分钟前
gincle完成签到 ,获得积分10
3分钟前
puzhongjiMiQ完成签到,获得积分10
3分钟前
4分钟前
ClaudeLvan发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
SciGPT应助ClaudeLvan采纳,获得10
5分钟前
5分钟前
5分钟前
去码头整点薯条完成签到,获得积分10
5分钟前
5分钟前
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cleaning Technology in Semiconductor Device Manufacturing: Proceedings of the Sixth International Symposium (Advances in Soil Science) 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837436
求助须知:如何正确求助?哪些是违规求助? 3379588
关于积分的说明 10509896
捐赠科研通 3099198
什么是DOI,文献DOI怎么找? 1706976
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772552