已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Fast inspection and accurate recognition of target objects for astronaut robots through deep learning

人工智能 目标检测 计算机科学 特征提取 计算机视觉 特征(语言学) 卷积神经网络 模式识别(心理学) 机器人 深度学习 学习迁移 瓶颈 哲学 语言学 嵌入式系统
作者
Yan Zhang,Manhong Li,Minglu Zhang,Ce Guo,Zhihong Jiang
出处
期刊:Measurement [Elsevier BV]
卷期号:213: 112687-112687
标识
DOI:10.1016/j.measurement.2023.112687
摘要

Target object detection based on deep learning and image processing technology is widely used in robot astronauts. However, existing detection methods have limitations in detection speed and accuracy due to the complex space environment (such as uneven illumination and particle radiation) and inadequate training samples. Inspired by the neural network structure and transfer learning, a deep learning detection method for small samples in complex environments is proposed. A depthwise separable convolution is added to a feature fusion network to reduce the number of parameters in image output feature mapping, and a linear bottleneck inverted residual structure is introduced into a backbone feature extraction network to reduce the computation and memory requirements during feature extraction. As a result, a backbone feature extraction–fusion network structure is established to solve the problem in detection speed. A squeeze-and-excitation (SE) attention module is introduced in front of the head, and an SE detector is constructed to improve the detection accuracy in a spatially complex environment by dynamically assigning image channel weights to highlight the target object features in blurred images. The learning efficiency and accuracy of the network model in the small sample case in this paper are addressed by incorporating the transfer learning idea and establishing the evaluation function of learning samples. Experimental results show that the proposed algorithm enables astronaut robots to detect object rapidly and accurately in complex environments. The average speed (frames per second) and accuracy of detection under 2200 training samples are 45.19 and 93.14%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星际空间站发布了新的文献求助200
2秒前
炙热水云完成签到,获得积分10
2秒前
5秒前
ASH完成签到 ,获得积分10
8秒前
LeezZZZ发布了新的文献求助10
11秒前
Jasper应助打工肥仔采纳,获得40
11秒前
12秒前
15秒前
科研通AI5应助任性的咖啡采纳,获得10
16秒前
18秒前
大马哈鱼发布了新的文献求助10
24秒前
25秒前
27秒前
30秒前
30秒前
酷波er应助iu1392采纳,获得10
30秒前
30秒前
31秒前
31秒前
31秒前
紫荆发布了新的文献求助10
31秒前
31秒前
31秒前
31秒前
31秒前
32秒前
烟花应助紧张的新烟采纳,获得10
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
33秒前
33秒前
33秒前
lyl完成签到,获得积分10
34秒前
34秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343727
关于积分的说明 10317463
捐赠科研通 3060505
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806710
科研通“疑难数据库(出版商)”最低求助积分说明 763295