已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of tool wear condition on-line monitoring method for impeller milling based on new data processing approach and DAE-BP-ANN-integrated modeling

刀具磨损 叶轮 机床 人工神经网络 机械加工 特征(语言学) 时域 信号(编程语言) 频域 工程类 信号处理 计算机科学 模式识别(心理学) 人工智能 电子工程 机械工程 计算机视觉 数字信号处理 语言学 哲学 程序设计语言
作者
Zheng Zou,Xu Gao,Si-Cong Lei,Hao Zhang,Rongcheng Min,Yong Yang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:238 (1-2): 124-136 被引量:3
标识
DOI:10.1177/09544054231157114
摘要

Tool wear condition monitoring plays an important role in the maintaining machining accuracy and machining efficiency of complex surface parts. In this study, a new on-line tool wear monitoring method based on a self-developed data processing approach for the impeller milling was proposed. To achieve that, a new tool wear experimental platform was first built to collect both the spindle current signal and thermal deformation data in entire life cycle of cutter. Based on collected data, features of the time domain, frequency domain and time-frequency domain were extracted indiscriminately, and a 38 × 156 feature-sample set was subsequently established. To further reduce the dimensions of this feature-sample set and rise its characterization capability, the feature set was further processed using the sensitivity analysis and deep auto-encoder algorithm. Finally, 12 synthesized features were filtered out and then used to build the mapping model of signal synthesized features to different tool wear conditions by adopting the structural artificial neural network (ANN) integrated with back propagation (BP) algorithm. To verify the reliability of the proposed BP-ANN-integrated tool wear condition monitoring model, another comparison analysis of different data processing approaches was conducted. The comparison results showed that the proposed method for tool wear condition online monitoring had reliable performance and the recognition accuracy was 88.9%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzq完成签到 ,获得积分10
1秒前
YBR完成签到 ,获得积分10
3秒前
迷你的夜天完成签到 ,获得积分10
3秒前
机灵哈密瓜完成签到,获得积分10
4秒前
azuzuzu完成签到,获得积分10
7秒前
轻松元绿完成签到 ,获得积分10
7秒前
明明完成签到 ,获得积分10
7秒前
海陵吹风鸡完成签到,获得积分10
8秒前
10秒前
1111完成签到 ,获得积分10
10秒前
wzm完成签到,获得积分10
12秒前
999完成签到,获得积分10
12秒前
彭于晏应助123采纳,获得10
13秒前
蓝色旋律发布了新的文献求助10
13秒前
517完成签到 ,获得积分10
13秒前
dfhh驳回了wanci应助
14秒前
17秒前
jhx完成签到,获得积分10
18秒前
20秒前
pK完成签到 ,获得积分10
21秒前
qinxie完成签到 ,获得积分10
21秒前
孟湛博完成签到,获得积分10
22秒前
iu1392发布了新的文献求助10
23秒前
23秒前
九日橙完成签到 ,获得积分10
24秒前
小枣完成签到 ,获得积分10
24秒前
子月之路完成签到,获得积分10
24秒前
夏侯夏侯完成签到 ,获得积分10
24秒前
鲍文启完成签到 ,获得积分10
26秒前
1212_11发布了新的文献求助10
28秒前
钮祜禄萱完成签到 ,获得积分10
28秒前
布丁完成签到 ,获得积分10
29秒前
azuzuzu发布了新的文献求助10
30秒前
龙骑士25完成签到 ,获得积分10
31秒前
31秒前
旅游家完成签到 ,获得积分10
31秒前
小鸟芋圆露露完成签到 ,获得积分10
31秒前
生而追梦不止完成签到,获得积分10
32秒前
33秒前
微笑冰棍完成签到 ,获得积分10
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798329
求助须知:如何正确求助?哪些是违规求助? 3343781
关于积分的说明 10317592
捐赠科研通 3060529
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763295

今日热心研友

诸葛御风
1
陈雷
10
WaitP
1
桥豆麻袋
1
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10