聚对苯二甲酸乙二醇酯
降级(电信)
催化作用
材料科学
铁电性
聚乙烯
化学工程
过氧化氢
复合材料
化学
有机化学
电介质
光电子学
电气工程
工程类
作者
Meixuan Wu,Renshu Wang,Lin Miao,Pengfei Sun,Baocheng Zhou,Yubing Xiong,Xiaoping Dong
标识
DOI:10.1016/j.jcis.2024.12.002
摘要
Pollution of microplastics (MPs) has been drastically threating human health, however, whose elimination from the environment by current approaches is inefficient due to their high molecular weight, stronghydrophobicity and stable covalent bonds. Herein, we report a novel and highly-efficient route to degrade MPs contaminants through synergistically piezocatalytic and Fenton-like activation of H2O2 by a ferroelectric Bi12(Bi0.5Fe0.5)O19.5 catalyst under ultrasound treatment. For 10 g/L polyethylene terephthalate microplastics (PET-MPs), the synergistic strategy reached a 28.9 % removal rate in 72 h, which is greatly enhanced in comparison to the individual piezocatalysis and Fenton (Fenton-like) activation. By optimizing the types of oxidants (H2O2, peroxymonosulfate and peroxydisulfate) and bismuth ferrite catalysts (non-piezoelectric Bi2Fe4O9 and piezoelectric BiFeO3/Bi12(Bi0.5Fe0.5)O19.5), it was revealed that H2O2 is the best oxidant, and the piezoelectric Bi12(Bi0.5Fe0.5)O19.5 with a high aspect-ratio morphology showed higher activity than the Bi2Fe4O9 and BiFeO3. The catalyst dosage and H2O2 concentration were further optimized, and the good durability of the catalyst was also demonstrated through multiple uses. Different characterization technologies demonstrated the occurrence of PET-MPs oxidation and fragmentation during the treatment process. The plausible mechanism of synergistically piezocatalytic and Fenton-like H2O2 activation was proposed based on measurements of band structure, piezoelectric property and reactive oxygen species generation. Finally, we detected the intermediates and determined a possible degradation route of PET-MPs. The toxicity assessment indicated that the produced intermediates have low toxicity and potential risks to the environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI