High performance neural network for solving coronary artery flow velocity field based on fluid component concentration

物理 组分(热力学) 人工神经网络 流量(数学) 流速 流体力学 领域(数学) 机械 心脏病学 医学 内科学 人工智能 热力学 数学 计算机科学 纯数学
作者
Bao Li,Hao Sun,Yang Yang,Luyao Fan,Xueke Li,Jie Liu,Guangfei Li,Boyan Mao,Liyuan Zhang,Yanping Zhang,Jinping Dong,Jian Liu,Chang Hou,Lihua Wang,Honghui Zhang,Suqin Huang,Tengfei Li,Liyuan Kong,Zijie Wang,Huanmei Guo
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0244812
摘要

Rapid methods that can replace traditional inefficient computational fluid dynamics (CFD) for solving flow field are missing. We reconstructed three-dimensional (3D) coronary vascular tree models based on coronary computed tomography angiography (CCTA) images from 205 patients. Two fluid materials, blood and contrast agent, were mixed to simulate the flow field with concentration information under diverse boundary conditions, obtaining 2255 CFD simulations as deep learning samples. A dual-path physics-data multi-derived neural network (PDMNN) was designed, inputting geometric 3D point cloud and concentration information, respectively, and outputting 3D flow velocity field. Flow velocity in the coronary artery was clinically measured in 26 patients to verify the proposed PDMNN. For the 100 cases in a test set, the mean square error of the flow field velocity between the CFD calculations and the PDMNN predictions is 0.0309. However, the time taken by the PDMNN is significantly reduced (10 s VS 0.5 h). Clinically measured mean blood flow velocity and PDMNN predictions did not yield statistically significant differences (0.00 ± 0.05 m/s, P > 0.05). The proposed PDMNN present excellent computation accuracy and efficiency, holding a significant technical value for the clinical and engineering application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助和安采纳,获得10
刚刚
1秒前
呼呼哈哈完成签到,获得积分10
1秒前
咕噜噜完成签到,获得积分10
1秒前
2秒前
2秒前
喝可乐的萝卜兔完成签到 ,获得积分10
2秒前
月上卿云完成签到,获得积分10
2秒前
周而复始@发布了新的文献求助10
4秒前
缄默完成签到,获得积分10
4秒前
wuhoo完成签到,获得积分10
6秒前
vera完成签到 ,获得积分10
6秒前
7秒前
谦让的博完成签到,获得积分10
8秒前
彩色的过客完成签到 ,获得积分10
8秒前
曹能豪发布了新的文献求助10
8秒前
张琪琪发布了新的文献求助10
9秒前
沉静的靖巧完成签到,获得积分20
9秒前
9秒前
10秒前
Mistletoe完成签到 ,获得积分10
10秒前
11秒前
12秒前
搜集达人应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
bkagyin应助周而复始@采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
jakeey应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
tuanheqi应助科研通管家采纳,获得150
14秒前
Zx_1993应助科研通管家采纳,获得10
14秒前
40873应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
王开心应助科研通管家采纳,获得10
14秒前
量子星尘发布了新的文献求助150
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855566
求助须知:如何正确求助?哪些是违规求助? 4152433
关于积分的说明 12868536
捐赠科研通 3902242
什么是DOI,文献DOI怎么找? 2144120
邀请新用户注册赠送积分活动 1163753
关于科研通互助平台的介绍 1064357