Effects of non-Newtonian models on viscosity of unsteady aortic blood flow

物理 机械 粘度 牛顿流体 血流 流量(数学) 非牛顿流体 血液粘度 医学 经典力学 心脏病学 热力学
作者
Yonghui Qiao,Yifan Sun,Hengjie Guo,Zhongyong Pan,Shuai Wang,Wenqiang Shang,Kun Luo
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11) 被引量:1
标识
DOI:10.1063/5.0233940
摘要

Computational hemodynamics plays a crucial role in reproducing the details of aortic blood flow. However, the application of the non-Newtonian viscosity model is still controversial. The objective of this study is to demonstrate the effects of different non-Newtonian models on the viscosity of blood flow in healthy aorta. First, we reconstructed the three-dimensional geometric models of two healthy aortas based on computed tomography angiography images. The blood flow waveform with parabolic distribution and the three-element Windkessel model were adopted as boundary conditions. Then, the interaction between the blood flow and hyperelastic aortic vessel wall was considered by the two-way fluid–structure interaction method. Finally, we chose four commonly used non-Newtonian viscosity models: the Quemada model, Casson model, Carreau, and Carreau–Yasuda models. Results show that the instantaneous low shear strain rate (SSR < 100 s−1) cannot be neglected considering its relatively high proportion in the aortic wall (50%) and cardiac cycle (33%). We find that the Quemada model can predict the shear-thinning properties of aortic blood flow, especially the relatively low viscosity distribution. Besides, the high-viscosity iso-surface is observed in the descending aorta throughout the cardiac cycle. The phenomena further underline that the Newtonian assumption is not suitable for predicting the viscosity distribution of aortic blood flow. In conclusion, the non-Newtonian viscosity model is suggested to be adopted in aortic computational hemodynamics, and the performance of the Quemada model is satisfactory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nb666发布了新的文献求助10
1秒前
2秒前
2秒前
cccchen完成签到,获得积分10
2秒前
Bear发布了新的文献求助10
2秒前
qwq完成签到,获得积分10
4秒前
英吉利25发布了新的文献求助10
4秒前
pj完成签到,获得积分10
4秒前
5秒前
5秒前
qwq发布了新的文献求助10
6秒前
pj发布了新的文献求助10
7秒前
LJX关闭了LJX文献求助
7秒前
shiqiang mu发布了新的文献求助10
8秒前
1212完成签到,获得积分10
10秒前
顺利的若灵完成签到,获得积分10
10秒前
开心万岁完成签到,获得积分10
10秒前
11秒前
聂龙誉发布了新的文献求助10
11秒前
英姑应助qwq采纳,获得10
12秒前
CAOHOU应助李麟采纳,获得10
12秒前
lagom完成签到,获得积分10
12秒前
12秒前
星辰大海应助大脸猫4811采纳,获得10
13秒前
陈早早发布了新的文献求助10
15秒前
16秒前
科研通AI2S应助yue采纳,获得10
16秒前
16秒前
桃子发布了新的文献求助10
16秒前
折折完成签到,获得积分10
16秒前
17秒前
Yangyue完成签到,获得积分10
17秒前
英姑应助科研民工采纳,获得10
18秒前
星辰大海应助Jasper采纳,获得10
18秒前
大个应助无名采纳,获得10
21秒前
喜悦的丝完成签到 ,获得积分10
22秒前
紫藤蛇发布了新的文献求助10
22秒前
chase发布了新的文献求助10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4127379
求助须知:如何正确求助?哪些是违规求助? 3664811
关于积分的说明 11595850
捐赠科研通 3363984
什么是DOI,文献DOI怎么找? 1848552
邀请新用户注册赠送积分活动 912470
科研通“疑难数据库(出版商)”最低求助积分说明 828067