Molecular Evolution of Target Organosulfur Enables High-Performance Aqueous Zinc Batteries

化学 有机硫化合物 水溶液 无机化学 有机化学 硫黄
作者
Wenxuan Sun,Fulong Zhu,Wei Guo,Yongzhu Fu
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
标识
DOI:10.1021/jacs.4c14751
摘要

Organic cathode materials for aqueous zinc-ion batteries (AZIBs) have garnered significant attention due to their environmental friendliness and structurally customizable nature. However, the low voltage, sluggish redox kinetics, and high solubility of most n-type cathode materials hinder their wide deployment. To overcome these challenges, through molecular evolution, we rationally select a cheap industrial material, organodisulfide 2,2'-dithiobis (benzothiazole) (MBTS), as an n-type cathode material for AZIBs. Due to the presence of N-containing benzothiazole rings, the dissociation energy of the sulfur-sulfur (S-S) bond is reduced, substantially enhancing the discharge voltage and improving the reaction kinetics. They regulate the π-conjugated plane to achieve a low solubility and fast charge transfer. Moreover, density functional theory (DFT) calculations elucidate the synergistic effect between adjacent active sites and Zn2+ storage reactions, revealing that the formation of weak coordination bonds between N and Zn atoms (N-Zn-S bond) reduces the solubility of the discharge product. Molecular evolution has led to the fast reaction kinetics of zinc ion storage, thus achieving a high performance under high mass loading. At a current density of 0.05 A g-1, MBTS exhibits an average discharge voltage of 1.02 V, with a mere overpotential of 100 mV, and delivers a high specific capacity of 153.6 mAh g-1. The assembled pouch cell demonstrates an excellent rate capability of 124.4 mAh g-1 at 1 A g-1 and displays a stable cycle life after 200 cycles with 96.8% capacity retention. Remarkably, MBTS maintains high specific capacity and favorable cycle stability under various ultrahigh loadings, up to 18.2 mg cm-2. The findings provide substantial guidance for practical applications of organic electrode materials in AZIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zy完成签到,获得积分10
刚刚
Chen发布了新的文献求助10
刚刚
夏侯一鸣发布了新的文献求助20
1秒前
binshier完成签到,获得积分10
1秒前
千与千夜完成签到,获得积分20
1秒前
1秒前
思源应助Rain采纳,获得10
2秒前
2秒前
年轻元冬完成签到,获得积分10
2秒前
梦巷完成签到 ,获得积分10
2秒前
2秒前
上官若男应助猪肉铺采纳,获得10
3秒前
3秒前
3秒前
重缘完成签到,获得积分10
4秒前
科目三应助威武大楚采纳,获得10
4秒前
kun完成签到,获得积分10
4秒前
Kuhaku完成签到,获得积分10
5秒前
5秒前
tianqing完成签到,获得积分10
6秒前
席河木鱼发布了新的文献求助10
7秒前
马丹娜完成签到,获得积分10
8秒前
幽默的月光完成签到,获得积分10
8秒前
吴愁发布了新的文献求助10
8秒前
姚文超发布了新的文献求助10
8秒前
8秒前
孤独寻云发布了新的文献求助10
8秒前
小马甲应助科研不是科幻采纳,获得10
8秒前
劼大大完成签到,获得积分10
9秒前
上官若男应助摩根采纳,获得10
9秒前
Rain完成签到,获得积分10
9秒前
酷炫迎波完成签到,获得积分10
10秒前
10秒前
等等完成签到,获得积分10
10秒前
MRshenyy完成签到,获得积分10
11秒前
卓矢完成签到 ,获得积分10
11秒前
11秒前
11秒前
幻幻完成签到,获得积分10
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834218
求助须知:如何正确求助?哪些是违规求助? 3376802
关于积分的说明 10495184
捐赠科研通 3096251
什么是DOI,文献DOI怎么找? 1704868
邀请新用户注册赠送积分活动 820288
科研通“疑难数据库(出版商)”最低求助积分说明 771926