亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of a methodological framework for the development and multicenter validation of reliable artificial intelligence in embryo evaluation

多中心研究 计算机科学 人工智能 医学 内科学 随机对照试验
作者
D Gilboa,Akhil Garg,M. Shapiro,Marcos Meseguer,Yamama Amar,Nicole Lustgarten,Nina Desai,Tal Shavit,Viviane Aline Oliveira Silva,Achilleas Papatheodorou,Alexia Chatziparasidou,Sameer Angras,J. H. Lee,L. Thiel,Carol Lynn Curchoe,Yishay Tauber,Daniel S. Seidman
出处
期刊:Reproductive Biology and Endocrinology [BioMed Central]
卷期号:23 (1)
标识
DOI:10.1186/s12958-025-01351-w
摘要

Artificial intelligence (AI) models analyzing embryo time-lapse images have been developed to predict the likelihood of pregnancy following in vitro fertilization (IVF). However, limited research exists on methods ensuring AI consistency and reliability in clinical settings during its development and validation process. We present a methodology for developing and validating an AI model across multiple datasets to demonstrate reliable performance in evaluating blastocyst-stage embryos. This multicenter analysis utilizes time-lapse images, pregnancy outcomes, and morphologic annotations from embryos collected at 10 IVF clinics across 9 countries between 2018 and 2022. The four-step methodology for developing and evaluating the AI model include: (I) curating annotated datasets that represent the intended clinical use case; (II) developing and optimizing the AI model; (III) evaluating the AI's performance by assessing its discriminative power and associations with pregnancy probability across variable data; and (IV) ensuring interpretability and explainability by correlating AI scores with relevant morphologic features of embryo quality. Three datasets were used: the training and validation dataset (n = 16,935 embryos), the blind test dataset (n = 1,708 embryos; 3 clinics), and the independent dataset (n = 7,445 embryos; 7 clinics) derived from previously unseen clinic cohorts. The AI was designed as a deep learning classifier ranking embryos by score according to their likelihood of clinical pregnancy. Higher AI score brackets were associated with increased fetal heartbeat (FH) likelihood across all evaluated datasets, showing a trend of increasing odds ratios (OR). The highest OR was observed in the top G4 bracket (test dataset G4 score ≥ 7.5: OR 3.84; independent dataset G4 score ≥ 7.5: OR 4.01), while the lowest was in the G1 bracket (test dataset G1 score < 4.0: OR 0.40; independent dataset G1 score < 4.0: OR 0.45). AI score brackets G2, G3, and G4 displayed OR values above 1.0 (P < 0.05), indicating linear associations with FH likelihood. Average AI scores were consistently higher for FH-positive than for FH-negative embryos within each age subgroup. Positive correlations were also observed between AI scores and key morphologic parameters used to predict embryo quality. Strong AI performance across multiple datasets demonstrates the value of our four-step methodology in developing and validating the AI as a reliable adjunct to embryo evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助去晒月亮采纳,获得10
16秒前
52秒前
57秒前
cacaldon发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
mmyhn应助de采纳,获得20
3分钟前
3分钟前
cacaldon发布了新的文献求助10
3分钟前
cacaldon完成签到,获得积分10
3分钟前
今后应助Chemmer采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
mama完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
CherylZhao完成签到,获得积分10
6分钟前
6分钟前
岁和景明完成签到 ,获得积分10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
6分钟前
7分钟前
poki完成签到 ,获得积分10
7分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976675
求助须知:如何正确求助?哪些是违规求助? 3520770
关于积分的说明 11204814
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629