亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

StableNormal: Reducing Diffusion Variance for Stable and Sharp Normal

扩散 差异(会计) 数学 计算机科学 物理 经济 会计 热力学
作者
Chongjie Ye,Lingteng Qiu,Xiaodong Gu,Qi Zuo,Yushuang Wu,Zilong Dong,Liefeng Bo,Yuliang Xiu,Xiaoguang Han
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:43 (6): 1-18 被引量:1
标识
DOI:10.1145/3687971
摘要

This work addresses the challenge of high-quality surface normal estimation from monocular colored inputs (i.e., images and videos), a field which has recently been revolutionized by repurposing diffusion priors. However, previous attempts still struggle with stochastic inference, conflicting with the deterministic nature of the Image2Normal task, and costly ensembling step, which slows down the estimation process. Our method, StableNormal, mitigates the stochasticity of the diffusion process by reducing inference variance, thus producing "Stable-and-Sharp" normal estimates without any additional ensembling process. StableNormal works robustly under challenging imaging conditions, such as extreme lighting, blurring, and low quality. It is also robust against transparent and reflective surfaces, as well as cluttered scenes with numerous objects. Specifically, StableNormal employs a coarse-to-fine strategy, which starts with a one-step normal estimator (YOSO) to derive an initial normal guess, that is relatively coarse but reliable, then followed by a semantic-guided refinement process (SG-DRN) that refines the normals to recover geometric details. The effectiveness of StableNormal is demonstrated through competitive performance in standard datasets such as DIODE-indoor, iBims, ScannetV2 and NYUv2, and also in various downstream tasks, such as surface reconstruction and normal enhancement. These results evidence that StableNormal retains both the "stability" and "sharpness" for accurate normal estimation. StableNormal represents a baby attempt to repurpose diffusion priors for deterministic estimation. To democratize this, code and models have been publicly available in hf.co/Stable-X.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
andrele应助科研通管家采纳,获得10
27秒前
乾坤侠客LW完成签到,获得积分10
46秒前
1分钟前
暖暖完成签到,获得积分10
1分钟前
北辰zdx完成签到,获得积分10
1分钟前
xiaxia关注了科研通微信公众号
1分钟前
cdercder应助北辰zdx采纳,获得30
1分钟前
xiaxia完成签到,获得积分10
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
Banana完成签到,获得积分20
2分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
壮观的谷冬完成签到 ,获得积分10
2分钟前
打打应助XX采纳,获得10
3分钟前
XX完成签到,获得积分10
3分钟前
3分钟前
3分钟前
站我发布了新的文献求助10
3分钟前
CipherSage应助站我采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
LRxxx完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI5应助y234j788采纳,获得10
5分钟前
秀丽焦完成签到 ,获得积分10
5分钟前
5分钟前
英俊的铭应助wack采纳,获得10
5分钟前
Hillson完成签到,获得积分10
5分钟前
6分钟前
Kate发布了新的文献求助10
6分钟前
科研通AI2S应助LIN采纳,获得20
6分钟前
科研小狗完成签到 ,获得积分20
6分钟前
西蓝花香菜完成签到 ,获得积分10
7分钟前
7分钟前
y234j788发布了新的文献求助10
7分钟前
月亮完成签到 ,获得积分10
7分钟前
KaK发布了新的文献求助10
7分钟前
7分钟前
KaK完成签到,获得积分10
8分钟前
DrCuiTianjin完成签到 ,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468