Enhancing Unsupervised Feature Selection via Double Sparsity Constrained Optimization

特征选择 选择(遗传算法) 计算机科学 人工智能 特征(语言学) 模式识别(心理学) 约束优化问题 机器学习 最优化问题 算法 哲学 语言学
作者
Xianchao Xiu,Anning Yang,Chenyi Huang,Xinrong Li,Wanquan Liu
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2501.00726
摘要

Unsupervised feature selection (UFS) is widely applied in machine learning and pattern recognition. However, most of the existing methods only consider a single sparsity, which makes it difficult to select valuable and discriminative feature subsets from the original high-dimensional feature set. In this paper, we propose a new UFS method called DSCOFS via embedding double sparsity constrained optimization into the classical principal component analysis (PCA) framework. Double sparsity refers to using $\ell_{2,0}$-norm and $\ell_0$-norm to simultaneously constrain variables, by adding the sparsity of different types, to achieve the purpose of improving the accuracy of identifying differential features. The core is that $\ell_{2,0}$-norm can remove irrelevant and redundant features, while $\ell_0$-norm can filter out irregular noisy features, thereby complementing $\ell_{2,0}$-norm to improve discrimination. An effective proximal alternating minimization method is proposed to solve the resulting nonconvex nonsmooth model. Theoretically, we rigorously prove that the sequence generated by our method globally converges to a stationary point. Numerical experiments on three synthetic datasets and eight real-world datasets demonstrate the effectiveness, stability, and convergence of the proposed method. In particular, the average clustering accuracy (ACC) and normalized mutual information (NMI) are improved by at least 3.34% and 3.02%, respectively, compared with the state-of-the-art methods. More importantly, two common statistical tests and a new feature similarity metric verify the advantages of double sparsity. All results suggest that our proposed DSCOFS provides a new perspective for feature selection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助cou采纳,获得10
1秒前
舒服的寻琴完成签到,获得积分10
1秒前
风清扬发布了新的文献求助30
1秒前
完美世界应助丸子采纳,获得10
2秒前
畅快的豆芽完成签到,获得积分10
2秒前
kirito1211发布了新的文献求助10
2秒前
2秒前
2秒前
你大米哥完成签到 ,获得积分0
3秒前
3秒前
liuuuuuu关注了科研通微信公众号
3秒前
4秒前
4秒前
4秒前
杨痒挠发布了新的文献求助10
4秒前
健忘的初翠完成签到,获得积分10
5秒前
fdsdvczx发布了新的文献求助10
5秒前
xue完成签到,获得积分10
6秒前
斯文败类应助凌发采纳,获得10
6秒前
G.D发布了新的文献求助10
7秒前
7秒前
dd99081发布了新的文献求助10
7秒前
ZZZHHH77完成签到,获得积分10
8秒前
李健的粉丝团团长应助zcx采纳,获得30
8秒前
化学少女发布了新的文献求助10
9秒前
顾矜应助lzx采纳,获得10
9秒前
10秒前
hututu发布了新的文献求助10
10秒前
torfun发布了新的文献求助10
11秒前
12秒前
鼻揩了转去应助WQY采纳,获得10
13秒前
xiaomaxia发布了新的文献求助10
13秒前
瘦墩墩完成签到 ,获得积分10
14秒前
清明风完成签到,获得积分10
14秒前
COCO完成签到,获得积分10
14秒前
chenamy完成签到,获得积分10
14秒前
hututu完成签到,获得积分10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4854863
求助须知:如何正确求助?哪些是违规求助? 4152077
关于积分的说明 12865828
捐赠科研通 3901479
什么是DOI,文献DOI怎么找? 2143799
邀请新用户注册赠送积分活动 1163437
关于科研通互助平台的介绍 1064003