DLBclass: a probabilistic molecular classifier to guide clinical investigation and practice in diffuse large B-cell lymphoma

人工智能 分类器(UML) 概率分类 概率逻辑 机器学习 计算机科学 试验装置 模式识别(心理学) 支持向量机 朴素贝叶斯分类器
作者
Bjoern Chapuy,Timothy R. Wood,Chip Stewart,Andrew Dunford,Kirsty Wienand,Sumbul Jawed Khan,Nazli Serin,Meng Wang,Eleonora Calabretta,Joji Shimono,Samantha Van Seters,Sam M. Wiseman,Saveliy Belkin,David I. Heiman,Robert Redd,Margaret A. Shipp,Gad Getz
出处
期刊:Blood [American Society of Hematology]
卷期号:145 (18): 2041-2055 被引量:12
标识
DOI:10.1182/blood.2024025652
摘要

Abstract Diffuse large B-cell lymphoma (DLBCL) is a clinically and molecularly heterogeneous disease. The increasing recognition and targeting of genetically defined DLBCLs highlight the need for robust classification algorithms. We previously characterized recurrent genetic alterations in DLBCL and identified 5 discrete subtypes, clusters 1 to 5 (C1-C5), with unique mechanisms of transformation, immune evasion, candidate treatment targets, and different outcomes after standard first-line therapy. Herein, we validate the C1 to C5 DLBCL taxonomy in an independent data set and use the expanded series of 699 primary DLBCLs to develop a probabilistic molecular classifier and confirm its performance in an independent test set. Using our previously assigned cluster labels as a reference, we systematically compared multiple machine learning models and strategies for input feature dimensionality reduction with a newly developed performance metric that captured the relationship between accuracy and confidence of class assignments. The winning neural network model, DLBclass, assigned all cases in the training/validation and independent test sets with 91% and 89% accuracies, respectively. In the 75% of cases with confidence >0.7, DLBclass assignments were accurate in 97% of the training/validation set and 98% of the test set. DLBclass enables robust prospective classification of single cases for inclusion in genetically guided clinical trials or practice and represents a framework for the development of genomics-based classification methods in other cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微笑幻波完成签到,获得积分10
刚刚
小杨完成签到,获得积分20
1秒前
yyydsg完成签到,获得积分10
1秒前
huminjie完成签到 ,获得积分10
1秒前
2秒前
研友_n0kYwL完成签到,获得积分10
2秒前
4秒前
henry完成签到 ,获得积分10
4秒前
5秒前
蜜呐完成签到,获得积分20
5秒前
7秒前
时时步步完成签到 ,获得积分10
7秒前
言辞完成签到,获得积分10
9秒前
O_O完成签到 ,获得积分10
10秒前
10秒前
13秒前
14秒前
14秒前
超级无敌霹雳喷火霸王龙完成签到 ,获得积分10
14秒前
LSHS发布了新的文献求助30
14秒前
15秒前
17秒前
17秒前
17秒前
嘴角微微仰起笑完成签到,获得积分10
19秒前
19秒前
Yi发布了新的文献求助30
20秒前
哈哈哈哈发布了新的文献求助10
22秒前
风-FBDD发布了新的文献求助10
23秒前
Rocket完成签到,获得积分10
25秒前
25秒前
28秒前
28秒前
李健的小迷弟应助甜兮采纳,获得10
28秒前
Yi完成签到,获得积分10
29秒前
风-FBDD完成签到,获得积分10
30秒前
哈哈哈哈完成签到,获得积分10
30秒前
31秒前
123发布了新的文献求助10
32秒前
SciGPT应助李海瑞采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5397132
求助须知:如何正确求助?哪些是违规求助? 4517388
关于积分的说明 14063639
捐赠科研通 4429280
什么是DOI,文献DOI怎么找? 2432263
邀请新用户注册赠送积分活动 1424811
关于科研通互助平台的介绍 1403862