Rational design facilitates the improvement of glucose tolerance and catalytic properties of a β‐glucosidase from Acetivibrio thermocellus

合理设计 化学 催化作用 生物化学 纳米技术 材料科学
作者
Chinmay Kamale,Abhishek Rauniyar,Prasenjit Bhaumik
出处
期刊:FEBS Journal [Wiley]
标识
DOI:10.1111/febs.17394
摘要

Cellulases are an ensemble of enzymes that hydrolyze cellulose chains into fermentable glucose and hence are widely used in bioethanol production. The last enzyme of the cellulose degradation pathway, β-glucosidase, is inhibited by its product, glucose. The product inhibition by glucose hinders cellulose hydrolysis limiting the saccharification during bioethanol production. Thus, engineered β-glucosidases with enhanced glucose tolerance and catalytic efficiency are essential. This study focuses on the rational engineering of β-glucosidase from Acetivibrio thermocellus (WT-AtGH1). Recombinant WT-AtGH1 exhibited activity on cellobiose and p-nitrophenyl-β-d-glucoside as substrates and retained around 80% of its activity over 48 h at 55 °C, pH 5.5. However, WT-AtGH1 showed low glucose tolerance of 380 mm as compared to the required IC50 value of > 800 mm for industrial use. Thus, a rational design approach was utilized to enhance the glucose tolerance of this enzyme. We determined the 3 Å resolution crystal structure of WT-AtGH1. The structure-based engineered G168W-AtGH1 and S242W-AtGH1 mutants exhibited improved glucose tolerance of 840 and 612 mm, respectively. Surprisingly, S242L-AtGH1 mutant showed ~ 2.5-fold increase in the catalytic efficiency as compared to WT-AtGH1. A combinatorial effect of improved glucose tolerance, as well as enhanced catalytic efficiency, was observed for the G168W-S242L-AtGH1 mutant. All the mutants with enhanced properties showed considerable stability at industrial operating conditions of 55 °C and pH 5.5. Thus, we present mutants of WT-AtGH1 with improved glucose tolerance and kinetic properties that have the potential to increase the efficiency of saccharification during biofuel production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zlren发布了新的文献求助10
刚刚
科研通AI2S应助妖孽采纳,获得10
刚刚
夕余发布了新的文献求助10
刚刚
悦耳娩完成签到,获得积分10
1秒前
omegaouy完成签到,获得积分10
1秒前
2秒前
知无涯完成签到,获得积分10
2秒前
冰魂应助舒适路人采纳,获得10
4秒前
智守奇安发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助KK采纳,获得10
6秒前
weny完成签到,获得积分10
7秒前
7秒前
哭泣鼠标完成签到 ,获得积分10
8秒前
93发布了新的文献求助10
9秒前
DE发布了新的文献求助10
9秒前
加菲丰丰应助朱彤彤采纳,获得10
10秒前
开开心心的开心完成签到,获得积分10
10秒前
泠199发布了新的文献求助10
10秒前
不想看文献完成签到,获得积分10
12秒前
SAODEN完成签到,获得积分10
15秒前
冰魂应助舒适路人采纳,获得10
16秒前
阿罗宁宁完成签到 ,获得积分10
16秒前
16秒前
Leon应助mujin采纳,获得10
17秒前
干净盼山完成签到,获得积分10
18秒前
18秒前
泠199完成签到,获得积分10
18秒前
18秒前
LArry完成签到,获得积分10
19秒前
19秒前
VitoLi发布了新的文献求助10
20秒前
汉堡包应助11采纳,获得10
21秒前
23秒前
木影忆发布了新的文献求助10
24秒前
24秒前
fffff发布了新的文献求助10
24秒前
随遇而安应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242254
捐赠科研通 3044938
什么是DOI,文献DOI怎么找? 1671417
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759342