土壤碳
农林复合经营
环境科学
土壤养分
碳储量
营养物
草原
土地利用、土地利用的变化和林业
碳纤维
土地利用
土壤科学
农学
气候变化
生态学
土壤水分
生物
复合材料
材料科学
复合数
作者
Archana Fartyal,Surendra Singh Bargali,Kiran Bargali,Bhawna Negi
摘要
ABSTRACT Land‐use changes are anticipated to be a substantial contributor to global change climate, substantially causing significant modifications in soil characteristics. This study addressed the impact of land‐use change from native forests to grasslands on the soil physico‐chemical properties in entirely replicated grasslands of three different forest zones (Oak, Pine and Cypress) in temperate region of Kumaun Himalaya. A total of 162 soil samples (6 sites × 3 plots × 3 seasons × 3 depths = 162 samples) were randomly collected from each site in triplicates from depths. The soil texture, bulk density (bD), porosity, water holding capacity, soil moisture content, pH, organic carbon (SOC), total nitrogen (TN), available phosphorus (P) and available potassium (K) were determined at different depths in forest and grassland sites. Results showed that soil bD, pH, SOC, TN, P and K significantly ( p < 0.05) decreased with increasing depth. Moreover, conversion of forests into grassland reduced nutrient concentrations, physical qualities (bD and porosity), and pH levels. The decreasing trend of nutrient along the soil depth explains that the zone of nutrient accumulation is not well established in these grasslands because of the substantial leaching effect. Our findings indicate that conversion of natural forests into grasslands resulted in significant losses of SOC and TN stocks which can be attributed to the disturbance of natural forests. Therefore, while making land‐use change plans, the impact of these alterations on soil nutrients must be considered. These findings emphasize the value of establishing natural vegetation (forests) in these areas to retain nutrients and safeguard soil against runoff and erosion. However, anticipating the physico‐chemical impacts of land‐use alteration necessitates a better comprehension of its relations with other drivers of global change, such as changing climate and nitrogen deposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI