TreeLearn: A deep learning method for segmenting individual trees from ground-based LiDAR forest point clouds

激光雷达 点云 点(几何) 遥感 计算机科学 人工智能 市场细分 环境科学 地理 数学 几何学 业务 营销
作者
Jonathan Henrich,Jan van Delden,Dominik Seidel,Thomas Kneib,Alexander S. Ecker
出处
期刊:Ecological Informatics [Elsevier]
卷期号:84: 102888-102888 被引量:34
标识
DOI:10.1016/j.ecoinf.2024.102888
摘要

Laser-scanned point clouds of forests make it possible to extract valuable information for forest management. To consider single trees, a forest point cloud needs to be segmented into individual tree point clouds. Existing segmentation methods are usually based on hand-crafted algorithms, such as identifying trunks and growing trees from them, and face difficulties in dense forests with overlapping tree crowns. In this study, we propose TreeLearn, a deep learning-based approach for tree instance segmentation of forest point clouds. TreeLearn is trained on already segmented point clouds in a data-driven manner, making it less reliant on predefined features and algorithms. Furthermore, TreeLearn is implemented as a fully automatic pipeline and does not rely on extensive hyperparameter tuning, which makes it easy to use. Additionally, we introduce a new manually segmented benchmark forest dataset containing 156 full trees. The data is generated by mobile laser scanning and contributes to create a larger and more diverse data basis for model development and fine-grained instance segmentation evaluation. We trained TreeLearn on forest point clouds of 6665 trees, labeled using the Lidar360 software. An evaluation on the benchmark dataset shows that TreeLearn performs as well as the algorithm used to generate its training data. Furthermore, the performance can be vastly improved by fine-tuning the model using manually annotated datasets. We evaluate TreeLearn on our benchmark dataset and the Wytham Woods dataset, outperforming the recent SegmentAnyTree, ForAINet and TLS2Trees methods. The TreeLearn code and all datasets that were created in the course of this work are made publicly available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不想上班了完成签到 ,获得积分10
刚刚
1秒前
1秒前
游子轩应助longuy采纳,获得10
1秒前
ding应助longuy采纳,获得10
1秒前
琉璃脆发布了新的文献求助30
3秒前
柚子苗发布了新的文献求助10
3秒前
小大巫发布了新的文献求助10
5秒前
嗯对发布了新的文献求助20
5秒前
wqy发布了新的文献求助10
5秒前
5秒前
6秒前
农夫完成签到,获得积分0
7秒前
NexusExplorer应助Jasper采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
华仔应助科研通管家采纳,获得10
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
Hello应助科研通管家采纳,获得10
9秒前
小米应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745648
求助须知:如何正确求助?哪些是违规求助? 5427752
关于积分的说明 15353699
捐赠科研通 4885574
什么是DOI,文献DOI怎么找? 2626826
邀请新用户注册赠送积分活动 1575349
关于科研通互助平台的介绍 1532087