Aligning, Autoencoding and Prompting Large Language Models for Novel Disease Reporting

计算机科学 人工智能 自然语言处理 计算机视觉 机器学习 数据科学
作者
Fenglin Liu,Xian Wu,Jinfa Huang,Bang Yang,Kim Branson,Patrick Schwab,Lei Clifton,Ping Zhang,Jiebo Luo,Yefeng Zheng,David A. Clifton
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tpami.2025.3534586
摘要

Given radiology images, automatic radiology report generation aims to produce informative text that reports diseases. It can benefit current clinical practice in diagnostic radiology. Existing methods typically rely on large-scale medical datasets annotated by clinicians to train desirable models. However, for novel diseases, sufficient training data are typically not available. We propose a prompt-based deep learning framework, i.e., PromptLLM, to align, autoencode, and prompt the (large) language model to generate reports for novel diseases accurately and efficiently. Our method includes three major steps: (1) aligning visual images and textual reports to learn general knowledge across modalities from diseases where labeled data are sufficient, (2) autoencoding the LLM using unlabeled data of novel diseases to learn the specific knowledge and writing styles of the novel disease, and (3) prompting the LLM with learned knowledge and writing styles to report the novel diseases contained in the radiology images. Through the above three steps, with limited labels on novel diseases, we show that PromptLLM can rapidly learn the corresponding knowledge for accurate novel disease reporting. The experiments on COVID-19 and diverse thorax diseases show that our approach, utilizing 1% of the training data, achieves desirable performance compared to previous methods. It shows that our approach allows us to relax the reliance on labeled data that is common to existing methods. It could have a real-world impact on data analysis during the early stages of novel diseases. Our code and data are available at https://github.com/ai-in-health/PromptLLM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心态完成签到,获得积分10
刚刚
清爽的人龙完成签到 ,获得积分10
1秒前
oc666888发布了新的文献求助10
1秒前
1秒前
不安青牛应助林林林林采纳,获得10
1秒前
细腻听白发布了新的文献求助10
1秒前
Eternal完成签到 ,获得积分10
2秒前
3秒前
流耶完成签到,获得积分10
3秒前
家的温暖完成签到,获得积分10
5秒前
kkk完成签到,获得积分10
6秒前
悦耳虔纹完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
称心语风发布了新的文献求助10
7秒前
花藏影完成签到,获得积分10
7秒前
7秒前
exosome完成签到,获得积分10
8秒前
ding应助minmin采纳,获得10
8秒前
小山隹发布了新的文献求助10
8秒前
blink_gmx完成签到,获得积分10
9秒前
浮游应助细腻听白采纳,获得10
9秒前
腼腆的洪纲完成签到,获得积分10
10秒前
新开完成签到,获得积分10
11秒前
11秒前
12秒前
eric完成签到 ,获得积分0
12秒前
13秒前
草长莺飞完成签到,获得积分10
14秒前
2224270676完成签到,获得积分10
14秒前
小女完成签到,获得积分10
14秒前
朴实雨竹完成签到,获得积分10
15秒前
hhjk发布了新的文献求助10
16秒前
16秒前
田様应助Tracy采纳,获得10
17秒前
Lucas应助molly采纳,获得10
17秒前
无花果应助萍bao采纳,获得10
17秒前
17秒前
信徒发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4720211
求助须知:如何正确求助?哪些是违规求助? 4080790
关于积分的说明 12618692
捐赠科研通 3785506
什么是DOI,文献DOI怎么找? 2090874
邀请新用户注册赠送积分活动 1116919
科研通“疑难数据库(出版商)”最低求助积分说明 993903