Detecting B-cell lymphoma-6 overexpression status in primary central nervous system lymphoma using multiparametric MRI-based machine learning

原发性中枢神经系统淋巴瘤 支持向量机 人工智能 朴素贝叶斯分类器 医学 机器学习 逻辑回归 神经组阅片室 感知器 人工神经网络 多层感知器 模式识别(心理学) 淋巴瘤 计算机科学 神经学 病理 精神科
作者
Mingxiao Wang,Guoli Liu,Nan Zhang,Yanhua Li,Shuo Sun,Yong Yi Tan,Lin Ma
出处
期刊:Neuroradiology [Springer Science+Business Media]
标识
DOI:10.1007/s00234-025-03551-y
摘要

In primary central nervous system lymphoma (PCNSL), B-cell lymphoma-6 (BCL-6) is an unfavorable prognostic biomarker. We aim to non-invasively detect BCL-6 overexpression in PCNSL patients using multiparametric MRI and machine learning techniques. 65 patients (101 lesions) with primary central nervous system lymphoma (PCNSL) diagnosed from January 2013 to July 2023, and all patients were randomly divided into a training set and a validation set according to a ratio of 8 to 2. ADC map derived from DWI (b = 0/1000 s/mm2), fast spin echo T2WI, T2FLAIR, were collected at 3.0 T. A total of 2234 radiomics features from the tumor segmentation area were extracted and LASSO were used to select features. Logistic regression (LR), Naive bayes (NB), Support vector machine (SVM), K-nearest Neighbor, (KNN) and Multilayer Perceptron (MLP), were used for machine learning, and sensitivity, specificity, accuracy F1-score, and area under the curve (AUC) was used to evaluate the detection performance of five classifiers, 6 groups with combinations of different sequences were fitted to 5 classifiers, and optimal classifier was obtained. BCL-6 status could be identified to varying degrees with 30 models based on radiomics, and model performance could be improved by combining different sequences and classifiers. Support vector machine (SVM) combined with three sequence group had the largest AUC (0.95) in training set and satisfactory AUC (0.87) in validation set. Multiparametric MRI based machine learning is promising in detecting BCL-6 overexpression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
怕黑的无招完成签到,获得积分10
3秒前
尘林完成签到,获得积分10
3秒前
希望天下0贩的0应助一一采纳,获得10
3秒前
科目三应助Lxt采纳,获得10
4秒前
navy2022发布了新的文献求助10
4秒前
CodeCraft应助Rico采纳,获得10
5秒前
核桃应助carbon采纳,获得10
7秒前
852应助zj杰采纳,获得10
8秒前
HZQ应助JPH1990采纳,获得50
9秒前
廖梦雨完成签到 ,获得积分10
9秒前
情怀应助rachel03采纳,获得10
9秒前
科研通AI5应助W~舞采纳,获得10
9秒前
10秒前
研友_ZAyqJZ完成签到,获得积分10
11秒前
12秒前
Beatrice完成签到,获得积分10
12秒前
yuqilin发布了新的文献求助10
12秒前
Akim应助navy2022采纳,获得10
12秒前
复杂大象发布了新的文献求助10
14秒前
一一发布了新的文献求助10
17秒前
CipherSage应助sxp1031采纳,获得10
17秒前
一心关注了科研通微信公众号
18秒前
20秒前
华仔应助不走寻常路采纳,获得10
20秒前
LEX完成签到,获得积分10
20秒前
琪凯定理完成签到,获得积分10
22秒前
23秒前
NexusExplorer应助老实芯采纳,获得10
23秒前
鬼见愁应助111采纳,获得10
23秒前
24秒前
Winfred发布了新的文献求助10
25秒前
27秒前
27秒前
小北发布了新的文献求助10
28秒前
Sera发布了新的文献求助10
28秒前
30秒前
yang发布了新的文献求助10
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4165669
求助须知:如何正确求助?哪些是违规求助? 3701288
关于积分的说明 11685502
捐赠科研通 3390016
什么是DOI,文献DOI怎么找? 1859146
邀请新用户注册赠送积分活动 919574
科研通“疑难数据库(出版商)”最低求助积分说明 832193