A RAG-based Medical Assistant Especially for Infectious Diseases

计算机科学
作者
S. Kirubakaran,Jasper Wilsie Kathrine G,E. Grace Mary Kanaga,Mahimai Raja J,Ruban Gino Singh A,E Yuvaraajan.
标识
DOI:10.1109/icict60155.2024.10544639
摘要

Infectious diseases like COVID-19 have gained international attention recently. Furthermore, there are significantly fewer doctors per capita in densely populated nations like India, which hurts those in need. Under such circumstances, natural language processing techniques might make it feasible to create an intelligent and engaging chatbot system. The primary objective of the effort is to develop an interactive solution that is entirely open source and can be easily installed on a local computer using the most recent data. Even though there are numerous chatbots on the market, proposed solutions highlight the need to provide individualized and sympathetic responses. Getting Back While the data is stored in the graph database as nodes and relationships, and the knowledge graph is constructed on top of it, augmented generation is utilized to extract the pertinent content from the data. To improve the generator's context, pertinent sections are collected during the question-answering process. This reduces hallucinations and increases the correctness of abstractions by providing external knowledge streams. Furthermore, the research study employs a text-to-speech model that was replicated from a physician's voice recording to narrate the produced responses, thereby augmenting user confidence and interaction. Academic institutions and healthcare organizations can benefit from this work by better understanding the value and effectiveness of applying NLP techniques to infectious disease research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
熏香澡牝完成签到,获得积分10
1秒前
天涯发布了新的文献求助20
1秒前
jianmin发布了新的文献求助10
2秒前
Anna完成签到,获得积分10
2秒前
2秒前
3秒前
cyy发布了新的文献求助10
4秒前
kingdr完成签到,获得积分10
4秒前
远方完成签到,获得积分10
4秒前
5秒前
喻踏歌完成签到,获得积分10
5秒前
牛马工人发布了新的文献求助30
5秒前
6秒前
YPJ--完成签到,获得积分10
6秒前
菜菜完成签到,获得积分10
6秒前
忧虑的乐驹完成签到,获得积分10
7秒前
Alicia完成签到,获得积分10
7秒前
Jormungandr完成签到,获得积分10
7秒前
喻踏歌发布了新的文献求助10
8秒前
乔乔兔发布了新的文献求助10
8秒前
研友_24789发布了新的文献求助50
8秒前
8秒前
111发布了新的文献求助10
9秒前
iaskwho完成签到,获得积分10
10秒前
吴雨峰完成签到,获得积分10
13秒前
曾经冰露发布了新的文献求助10
14秒前
爱听歌契完成签到 ,获得积分10
16秒前
Hmc完成签到 ,获得积分10
16秒前
xjy完成签到,获得积分10
17秒前
乔乔兔完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
爆米花应助科研岗采纳,获得10
21秒前
jessica发布了新的文献求助10
21秒前
笑点低易真完成签到,获得积分10
22秒前
23秒前
zho发布了新的文献求助10
23秒前
称心冰菱完成签到,获得积分10
24秒前
jianmin完成签到,获得积分10
26秒前
Lemonade发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869115
求助须知:如何正确求助?哪些是违规求助? 3411343
关于积分的说明 10673233
捐赠科研通 3135611
什么是DOI,文献DOI怎么找? 1729789
邀请新用户注册赠送积分活动 833475
科研通“疑难数据库(出版商)”最低求助积分说明 780798