清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep Learning–Based Assessment of Built Environment From Satellite Images and Cardiometabolic Disease Prevalence

医学 建筑环境 人口普查 疾病 普查区 环境卫生 美国社区调查 人口 病理 工程类 土木工程
作者
Zhuo Chen,Jean‐Eudes Dazard,Yassin Khalifa,Issam Motairek,Catherine Kreatsoulas,Sanjay Rajagopalan,Sadeer Al‐Kindi
出处
期刊:JAMA Cardiology [American Medical Association]
卷期号:9 (6): 556-556 被引量:11
标识
DOI:10.1001/jamacardio.2024.0749
摘要

Importance Built environment plays an important role in development of cardiovascular disease. Large scale, pragmatic evaluation of built environment has been limited owing to scarce data and inconsistent data quality. Objective To investigate the association between image-based built environment and the prevalence of cardiometabolic disease in urban cities. Design, Setting, and Participants This cross-sectional study used features extracted from Google satellite images (GSI) to measure the built environment and link them with prevalence of cardiometabolic disease. Convolutional neural networks, light gradient-boosting machines, and activation maps were used to assess the association with health outcomes and identify feature associations with coronary heart disease (CHD), stroke, and chronic kidney disease (CKD). The study obtained aerial images from GSI covering census tracts in 7 cities (Cleveland, Ohio; Fremont, California; Kansas City, Missouri; Detroit, Michigan; Bellevue, Washington; Brownsville, Texas; and Denver, Colorado). The study used census tract-level data from the US Centers for Disease Control and Prevention’s 500 Cities project. The data were originally collected from the Behavioral Risk Factor Surveillance System that surveyed people 18 years and older across the country. Analyses were conducted from February to December 2022. Exposures GSI images of built environment and cardiometabolic disease prevalence. Main Outcomes and Measures Census tract-level estimated prevalence of CHD, stroke, and CKD based on image-based built environment features. Results The study obtained 31 786 aerial images from GSI covering 789 census tracts. Built environment features extracted from GSI using machine learning were associated with prevalence of CHD ( R 2 = 0.60), stroke ( R 2 = 0.65), and CKD ( R 2 = 0.64). The model performed better at distinguishing differences between cardiometabolic prevalence between cities than within cities (eg, highest within-city R 2 = 0.39 vs between-city R 2 = 0.64 for CKD). Addition of GSI features both outperformed and improved the model that only included age, sex, race, income, education, and composite indices for social determinants of health ( R 2 = 0.83 vs R 2 = 0.76 for CHD; P <.001). Activation maps from the features revealed certain health-related built environment such as roads, highways, and railroads and recreational facilities such as amusement parks, arenas, and baseball parks. Conclusions and Relevance In this cross-sectional study, a significant portion of cardiometabolic disease prevalence was associated with GSI-based built environment using convolutional neural networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心无杂念完成签到 ,获得积分10
3秒前
郭磊完成签到 ,获得积分10
12秒前
图喵喵完成签到,获得积分10
18秒前
通科研完成签到 ,获得积分10
25秒前
YMM完成签到,获得积分10
53秒前
CHEN完成签到 ,获得积分10
1分钟前
Ava应助老实的采蓝采纳,获得10
1分钟前
狼来了aas完成签到,获得积分10
1分钟前
1分钟前
1分钟前
gege完成签到,获得积分10
1分钟前
老实的采蓝完成签到,获得积分10
1分钟前
坚定修勾冲冲冲完成签到 ,获得积分10
2分钟前
辣小扬完成签到 ,获得积分10
2分钟前
房天川完成签到 ,获得积分10
2分钟前
2分钟前
Bethune124完成签到 ,获得积分10
2分钟前
淞淞于我完成签到 ,获得积分10
2分钟前
天天开心完成签到 ,获得积分10
3分钟前
Bethune完成签到 ,获得积分10
3分钟前
辣辣辣辣辣辣完成签到 ,获得积分10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
矛头蝮应助科研通管家采纳,获得10
3分钟前
3分钟前
欣欣完成签到,获得积分10
3分钟前
carl完成签到 ,获得积分10
4分钟前
zgx完成签到 ,获得积分10
4分钟前
redamancy完成签到 ,获得积分10
4分钟前
sai完成签到,获得积分10
5分钟前
点点完成签到 ,获得积分10
5分钟前
呆呆的猕猴桃完成签到 ,获得积分10
5分钟前
笑点低蜜蜂完成签到 ,获得积分10
5分钟前
5分钟前
小魏小魏发布了新的文献求助10
5分钟前
小魏小魏完成签到,获得积分10
5分钟前
卜天亦完成签到,获得积分10
7分钟前
elisa828发布了新的文献求助10
7分钟前
朽木完成签到 ,获得积分10
8分钟前
风趣的冬卉完成签到 ,获得积分10
8分钟前
火星的雪完成签到 ,获得积分0
8分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4197659
求助须知:如何正确求助?哪些是违规求助? 3733210
关于积分的说明 11754983
捐赠科研通 3406847
什么是DOI,文献DOI怎么找? 1869384
邀请新用户注册赠送积分活动 925306
科研通“疑难数据库(出版商)”最低求助积分说明 835825