Designing network structure hydrogels derived from carrageenan- phosphated polymers by covalent and supramolecular interactions for potential biomedical applications
Recently, various efforts have been made to explore the potential of natural polysaccharides derived from sea weeds to promote sustainable development. Herein, carrageenan (CG), a polysaccharide extracted from red sea algae, was utilized to design network structures as hydrogels, aimed at significant applications in drug delivery (DD) systems. Hydrogels were designed by graft copolymerization reaction of poly(bis [2-methacryloyloxy] ethyl phosphate [poly(BMEP)] and poly(acrylic acid) [poly(AAc)] onto CG in the presence of a crosslinking agent. Hydrogels were developed by covalent linkage by graft copolymerization and supramolecular interactions, existing in the copolymers. Copolymers were characterized by Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR),