Combining machine learning and metal–organic frameworks research: Novel modeling, performance prediction, and materials discovery

化学 金属有机骨架 纳米技术 有机化学 吸附 材料科学
作者
Chunhua Li,Luqian Bao,Yixin Ji,Zhehang Tian,Mengyao Cui,Yubo Shi,Zhilei Zhao,Xianyou Wang
出处
期刊:Coordination Chemistry Reviews [Elsevier BV]
卷期号:514: 215888-215888 被引量:22
标识
DOI:10.1016/j.ccr.2024.215888
摘要

Machine learning (ML) is the science of making computers learn and behave like humans, autonomously improving their learning by providing them with data and information through observations and real-world interactions. ML methods have significantly accelerated the progress of materials science research. Researchers can use ML frameworks to construct materials research models and design platforms to analyze and predict enormous data resources on materials. Metal-organic frameworks (MOFs), a rapidly developing coordination polymer in the last two decades, have become the most competitive candidate among thousands of porous materials with the application of numerous ML methods and models that have been successfully developed. This review offers an overview of how ML methods may be well-integrated with studying MOFs. It starts with a brief background on the concept and application of ML, points out the importance of various types of descriptors for ML modeling, and introduces several novel algorithms and models using ML in recent years. Then, we elaborate on the current research status of ML methods in MOFs performance prediction and materials discovery. At last, potential challenges are pointed out, and an outlook is given regarding the basic situation of ML-based MOF research. As various functionalized MOFs continue to be developed and applied in specific directions, ML will bring its advantages to the forefront in designing and discovering novel MOFs. Therefore, this review intends to provide readers with fundamental perspectives on the broad range of applications where ML is combined with MOFs research and expects to help enhance their study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助HongJiang采纳,获得10
1秒前
李跑跑应助完美的八宝粥采纳,获得20
2秒前
清眸发布了新的文献求助10
3秒前
3秒前
hky发布了新的文献求助10
5秒前
怡然白竹发布了新的文献求助10
6秒前
Jasper应助archer01采纳,获得10
6秒前
7秒前
Crazyjmj完成签到,获得积分10
7秒前
8秒前
星辰大海应助鲨鱼辣椒采纳,获得10
8秒前
zhangzhang发布了新的文献求助20
8秒前
8秒前
9秒前
10秒前
11秒前
Progress完成签到,获得积分10
11秒前
aaron9898发布了新的文献求助10
11秒前
子林发布了新的文献求助10
13秒前
14秒前
凉生发布了新的文献求助10
14秒前
14秒前
搞怪书兰发布了新的文献求助10
14秒前
Edison发布了新的文献求助10
14秒前
荣荣发布了新的文献求助10
16秒前
英俊的铭应助ran采纳,获得10
16秒前
16秒前
yznfly应助清眸采纳,获得30
16秒前
搜集达人应助吴龙采纳,获得10
18秒前
康桥完成签到,获得积分10
19秒前
20秒前
小马甲应助DQY采纳,获得10
20秒前
Edison完成签到,获得积分10
20秒前
tao发布了新的文献求助10
21秒前
晨曦应助米诺采纳,获得10
21秒前
zyf完成签到,获得积分10
22秒前
22秒前
23秒前
耶?完成签到,获得积分10
23秒前
酷波er应助枣树先生采纳,获得10
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
Semantics for Latin: An Introduction 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4072079
求助须知:如何正确求助?哪些是违规求助? 3610852
关于积分的说明 11464658
捐赠科研通 3330642
什么是DOI,文献DOI怎么找? 1830965
邀请新用户注册赠送积分活动 901041
科研通“疑难数据库(出版商)”最低求助积分说明 820121