The association between immune cells and breast cancer: insights from mendelian randomization and meta‐analysis

医学 孟德尔随机化 乳腺癌 肿瘤微环境 免疫系统 肿瘤科 提吉特 免疫疗法 癌症 内科学 免疫学 基因 基因型 遗传变异 生物 生物化学
作者
Wanxian Xu,Tao Zhang,Zhitao Zhu,Yue Yang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
被引量:11
标识
DOI:10.1097/js9.0000000000001840
摘要

Background: Breast cancer (BC) is the most common cancer among women worldwide, with 2.3 million new cases and 685,000 deaths annually. It has the highest incidence in North America, Europe, and Australia and lower rates in parts of Asia and Africa. Risk factors include age, family history, hormone replacement therapy, obesity, alcohol consumption, and lack of physical activity. BRCA1 and BRCA2 gene mutations significantly increase the risk. The five-year survival rate is over 90% in developed countries but lower in developing ones. Early screening and diagnosis, using mammography and MRI, are crucial for reducing mortality. In recent years, significant progress has been made in studying BC immunophenotyping, particularly in multicolor flow cytometry, molecular imaging techniques, and tumor microenvironment analysis. These technologies improve diagnosis, classification, and detection of minimal residual disease. Novel immunotherapies targeting the tumor microenvironment, like CAR-T cell therapy, show high efficiency and fewer side effects. High levels of tumor-infiltrating lymphocytes (TILs) correlate with better prognosis, while immune checkpoint molecules (PD-1, PD-L1) help cancer cells evade the immune system. Tumor-associated macrophages (TAMs) promote invasion and metastasis. Blocking molecules like CTLA-4, LAG-3, and TIM-3 enhance anti-tumor responses, and cytokines like IL-10 and TGF-β aid tumor growth and immune evasion. Mendelian randomization (MR) studies use genetic variants to reduce confounding bias and avoid reverse causation, providing robust causal inferences about immune cell phenotypes and BC. This approach supports the development of precision medicine and personalized treatment strategies for BC. Methods: This study aims to conduct Mendelian Randomization (MR) analysis on 731 immune cell phenotypes with BC in the BCAC and Finngen R10 datasets, followed by a meta-analysis of the primary results using the inverse-variance weighted (IVW) method and multiple corrections for the significance p values from the meta-analysis. Specifically, the study is divided into three parts: First, data on 731 immune cell phenotypes and BC are obtained and preprocessed from the GWAS Catalog and Open GWAS (BCAC) and the Finngen R10 databases. Second, MR analysis is performed on the 731 immune cell phenotypes with BC data from the BCAC and Finngen R10 databases, followed by a meta-analysis of the primary results using the IVW method, with multiple corrections for the significance p values from the meta-analysis. Finally, the positively identified immune cell phenotypes are used as outcome variables, and BC as the exposure variable for reverse MR validation. Results: The study found that two immune phenotypes exhibited strong significant associations in MR analysis combined with meta-analysis and multiple corrections. For the immune phenotype CD3 on CD28+ CD4-CD8- T cells, the results were as follows: In the BCAC dataset, the IVW result was Odds Ratio ( OR ) = 0.942 (95% confidence interval ( CI ) = 0.915 ~ 0.970, P = 6.76 × 10 -5 ), β = -0.059; MR Egger result was β = -0.095; and the weighted median result was β = -0.060. In the Finngen R10 dataset, the IVW result was OR = 0.956 (95% CI = 0.907 ~ 1.01, P = 0.092), β = -0.045; MR Egger result was β = -0.070; and weighted median result was β = -0.035. The β values were consistent in direction across all three MR methods in both datasets. The meta-analysis of the IVW results from both datasets showed OR = 0.945 (95% CI = 0.922 ~ 0.970, P = 1.70 × 10 -5 ). After Bonferroni correction, the significant P-value was P = 0.01, confirming the immune phenotype as a protective factor against BC. For the immune phenotype HLA DR on CD33- HLA DR+, the results were as follows: In the BCAC dataset, the IVW result was OR = 0.977 (95% CI = 0.964 ~ 0.990, P = 7.64 × 10 -4 ), β = -0.023; MR Egger result was β = -0.016; and the weighted median result was β = -0.019. In the Finngen R10 dataset, the IVW result was OR = 0.960 (95% CI = 0.938 ~ 0.983, P = 6.51 × 10 -4 ), β = -0.041; MR Egger result was β = -0.064; and weighted median result was β = -0.058. The β values were consistent in direction across all three MR methods in both datasets. The meta-analysis of the IVW results from both datasets showed OR = 0.973 (95% CI = 0.961 ~ 0.984, P = 3.80 × 10 -6 ). After Bonferroni correction, the significant P-value was P = 0.003, confirming this immune phenotype as a protective factor against BC. When the immune cell phenotypes CD3 on CD28+ CD4-CD8- T cells and HLA DR on CD33- HLA DR+ were used as outcomes and BC was used as exposure, the data processing and analysis procedures were the same. The MR analysis results are as follows: Data from the FinnGen database regarding the effect of positive immune phenotypes on malignant neoplasm of the breast indicated a β coefficient of -0.011, OR = 0.99 (95% CI = -0.117 ~ 0.096, P = 0.846); data from the BCAC database regarding favorable immune phenotypes for BC demonstrated a β coefficient of -0.052, OR = 0.095 (95% CI = -0.144 ~ 0.040, P = 0.266). The results suggest insufficient evidence in both databases to indicate that BC inversely affects these two immune cell phenotypes. Conclusions: Evidence suggests that the immune cell phenotypes CD3 on CD28+ CD4-CD8- T cells and HLA DR on CD33- HLA DR+ protect against BC. This protective effect may be achieved through various mechanisms, including enhancing immune surveillance to recognize and eliminate tumor cells; secreting cytokines to inhibit tumor cell proliferation and growth directly; triggering apoptotic pathways in tumor cells to reduce their number; modulating the tumor microenvironment to make it unfavorable for tumor growth and spread; activating other immune cells to boost the overall immune response; and inhibiting angiogenesis to reduce the tumor’s nutrient supply. These mechanisms work together to help protect BC patients and slow disease progression. Both immune cell phenotypes are protective factors for BC patients and can be targeted to enhance their function and related pathways for BC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Milou发布了新的文献求助10
4秒前
5秒前
情怀应助excellent采纳,获得10
6秒前
9秒前
9秒前
Janus完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
完美世界应助jianghs采纳,获得30
11秒前
Yoki完成签到,获得积分10
12秒前
bwl发布了新的文献求助10
12秒前
唐婷婷完成签到,获得积分10
12秒前
小杜瘦得快应助香菜芋头采纳,获得10
12秒前
14秒前
14秒前
剑指东方是为谁应助leodu采纳,获得10
14秒前
佳墨发布了新的文献求助10
15秒前
昏睡的蟠桃应助科通研AI采纳,获得30
15秒前
看见回归发布了新的文献求助10
15秒前
if发布了新的文献求助10
15秒前
15秒前
小橘完成签到,获得积分10
15秒前
16秒前
昵称完成签到,获得积分10
16秒前
excellent发布了新的文献求助10
17秒前
饭团完成签到,获得积分10
18秒前
tangshijun发布了新的文献求助10
18秒前
天天发布了新的文献求助50
19秒前
我是老大应助bwl采纳,获得10
19秒前
19秒前
小橘发布了新的文献求助10
21秒前
Akim应助科研通管家采纳,获得30
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
英姑应助科研通管家采纳,获得10
22秒前
ZhouYW应助科研通管家采纳,获得10
22秒前
ZhouYW应助科研通管家采纳,获得10
22秒前
小二郎应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797603
求助须知:如何正确求助?哪些是违规求助? 3342968
关于积分的说明 10314328
捐赠科研通 3059688
什么是DOI,文献DOI怎么找? 1679063
邀请新用户注册赠送积分活动 806307
科研通“疑难数据库(出版商)”最低求助积分说明 763095