已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Rock discontinuities characterization from large-scale point clouds using a point-based deep learning method

不连续性分类 岩体分类 点(几何) 间断(语言学) 地质学 交叉口(航空) 稳健性(进化) 人工智能 算法 人工神经网络 噪音(视频) 模式识别(心理学) 计算机科学 数学 几何学 工程类 岩土工程 图像(数学) 数学分析 生物化学 基因 航空航天工程 化学
作者
Qian Chen,Yunfeng Ge,Huiming Tang
出处
期刊:Engineering Geology [Elsevier BV]
卷期号:337: 107585-107585 被引量:14
标识
DOI:10.1016/j.enggeo.2024.107585
摘要

Rock discontinuities are essential for the mechanical behavior and stability of rock mass. Previous approaches for characterizing discontinuities either rely on limited handcrafted features (point normals, point curvatures, point densities, and so on) or fail to classify discontinuities, making them unsuitable for complex and large-scale scenes. To cope with these problems, an end-to-end point-based deep learning method that can automatically learn rich and high-dimensional features and classify discontinuities was developed in this study. Firstly, a roadcut and part of a natural slope were selected to train the developed network and assess its performance. Subsequently, the trained network was used to classify the remaining part of the slope. Finally, the "Density-Based Scan Algorithm with Noise" (DBSCAN) and principal component analysis (PCA) algorithms were employed to extract individual discontinuities and calculate their orientations. The two cases achieved a global accuracy (GA) of 97.25% and 94.56%, respectively, and a mean intersection over union (MIoU) of 93.77% and 88.66%, respectively, indicating the excellent performance of the network. Meanwhile, the average error in dip angle and dip direction was 0.67° and 3.33°, respectively, proving the characterization ability of the developed method was satisfactory. Furthermore, the presented method exhibits strong robustness and the potential to characterize large-scale rock discontinuities with noise. This method facilitates the application of deep learning in geosciences and provides geologists and geological engineers with a new idea for rock discontinuity characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WindDreamer完成签到,获得积分10
5秒前
pysa完成签到,获得积分10
7秒前
azhou176完成签到,获得积分10
9秒前
梁嘉琦发布了新的文献求助10
10秒前
XRWei完成签到,获得积分10
10秒前
Bighen完成签到 ,获得积分0
14秒前
Ethanyoyo0917完成签到,获得积分10
17秒前
善学以致用应助zrm采纳,获得30
17秒前
Cylair完成签到,获得积分10
17秒前
宗语雪完成签到,获得积分10
19秒前
yangjoy完成签到 ,获得积分10
19秒前
qkren完成签到,获得积分10
20秒前
XRWei发布了新的文献求助10
23秒前
科研通AI5应助漂亮寻云采纳,获得10
24秒前
充电宝应助qiao采纳,获得10
25秒前
梁嘉琦完成签到,获得积分10
26秒前
核动力驴完成签到 ,获得积分10
26秒前
李小强完成签到 ,获得积分10
27秒前
11222222完成签到 ,获得积分10
28秒前
务实的焦完成签到 ,获得积分10
30秒前
Veronica Mew完成签到 ,获得积分10
30秒前
32秒前
34秒前
弓仪长发布了新的文献求助10
36秒前
端庄洪纲完成签到 ,获得积分10
36秒前
晚意完成签到 ,获得积分10
37秒前
小蘑菇应助LBQ采纳,获得10
37秒前
40秒前
kelien1205完成签到 ,获得积分10
40秒前
energyharvester完成签到 ,获得积分10
41秒前
蒋文辉完成签到,获得积分10
42秒前
43秒前
简简单单完成签到 ,获得积分10
43秒前
akakns完成签到 ,获得积分10
44秒前
心灵美的笑卉完成签到,获得积分10
47秒前
zrm发布了新的文献求助30
47秒前
48秒前
49秒前
nicholasgxz完成签到,获得积分10
49秒前
刘秀完成签到 ,获得积分10
49秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824866
求助须知:如何正确求助?哪些是违规求助? 3367233
关于积分的说明 10444697
捐赠科研通 3086477
什么是DOI,文献DOI怎么找? 1698047
邀请新用户注册赠送积分活动 816632
科研通“疑难数据库(出版商)”最低求助积分说明 769848