Machine-learning structural reconstructions for accelerated point defect calculations

点(几何) 人工智能 计算机科学 机器学习 几何学 数学
作者
Irea Mosquera‐Lois,Seán R. Kavanagh,Alex M. Ganose,Aron Walsh
出处
期刊:npj computational materials [Springer Nature]
卷期号:10 (1) 被引量:23
标识
DOI:10.1038/s41524-024-01303-9
摘要

Abstract Defects dictate the properties of many functional materials. To understand the behaviour of defects and their impact on physical properties, it is necessary to identify the most stable defect geometries. However, global structure searching is computationally challenging for high-throughput defect studies or materials with complex defect landscapes, like alloys or disordered solids. Here, we tackle this limitation by harnessing a machine-learning surrogate model to qualitatively explore the structural landscape of neutral point defects. By learning defect motifs in a family of related metal chalcogenide and mixed anion crystals, the model successfully predicts favourable reconstructions for unseen defects in unseen compositions for 90% of cases, thereby reducing the number of first-principles calculations by 73%. Using CdSe x Te 1− x alloys as an exemplar, we train a model on the end member compositions and apply it to find the stable geometries of all inequivalent vacancies for a range of mixing concentrations, thus enabling more accurate and faster defect studies for configurationally complex systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助留白采纳,获得10
刚刚
研友_VZG7GZ应助会飞的蜗牛采纳,获得10
1秒前
1秒前
2秒前
olekravchenko应助科研通管家采纳,获得10
2秒前
shhoing应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得30
2秒前
大龙哥886应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
shhoing应助科研通管家采纳,获得10
3秒前
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
酷波er应助Panda采纳,获得10
4秒前
我是老大应助JJ采纳,获得10
4秒前
FashionBoy应助大熊采纳,获得10
5秒前
6秒前
6秒前
6秒前
之之发布了新的文献求助10
8秒前
BlackSwan发布了新的文献求助10
8秒前
9秒前
雪山飞龙发布了新的文献求助10
9秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537552
求助须知:如何正确求助?哪些是违规求助? 4625058
关于积分的说明 14594445
捐赠科研通 4565526
什么是DOI,文献DOI怎么找? 2502476
邀请新用户注册赠送积分活动 1481047
关于科研通互助平台的介绍 1452224