224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus

一致性 生命银行 医学 全基因组关联研究 糖尿病 内科学 生物信息学 基因型 单核苷酸多态性 生物 内分泌学 生物化学 基因
作者
Libor Pastika,Arunashis Sau,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
标识
DOI:10.1136/heartjnl-2024-bcs.216
摘要

Background

With the rising incidence of Type 2 Diabetes Mellitus (T2DM) and the number of undiagnosed cases, there is an urgent need for innovative strategies for early identification of individuals at higher risk. To address this, we explore the utility of deep learning applied to 12-lead electrocardiograms (ECGs) for predicting the risk of incident T2DM in non-diabetic individuals, offering a novel approach for early detection and risk stratification.

Methods

The AI-ECG model, developed on the Beth Israel Deaconess Medical Center (BIDMC) dataset of 1.1 million ECGs and externally validated in the UK Biobank (UKB, N = 65,606), employs a residual neural network architecture tailored for a discrete-time survival model. Model performance was evaluated using the concordance index (C-index), and its enhancement of traditional risk factors was assessed via likelihood ratio tests (LRT) and net reclassification index (NRI). We also explored associations with clinical and echocardiographic features through a phenome-wide association study (PheWAS), and with genetic loci through a genome-wide association study (GWAS).

Results

The model predicted future T2DM in non-diabetic outpatient individuals with a C-index of 0.666 (0.658–0.675) in BIDMC and 0.689 (0.663–0.715) in UKB. The model showed consistent performance in both sexes, across ethnic groups, and BMI categories, except for patients aged ≥ 65. An improved performance was noted in individuals aged < 65, with a C-index of 0.691 (0.681, 0.701) and 0.765 (0.730, 0.797) in UKB. Adding the AI-ECG model to age, sex, BMI, and ECG parameters significantly enhanced predictive accuracy in the BIDMC cohort (p < 0.0001). Similarly, adding the model to the American Diabetes Association (ADA) risk score in the UKB substantially improved predictive accuracy (p < 0.0001). The continuous Net Reclassification Improvement (NRI) was 0.30 (0.22–0.40) for the BIDMC and 0.35 (0.21–0.47) for the UKB. The PheWAS and echocardiographic analyses identified significant associations between model predictions and a range of cardiac and non-cardiac phenotypes, including lipid profiles, glycaemic control, blood pressure, as well as echocardiographic measures of cardiac structure and function. This was substantiated by the GWAS study, highlighting genes associated with left ventricular structure, left atrial function, myocardial mass, blood pressure, T2DM, and HbA1C.

Conclusion

We have developed an AI-ECG model capable of predicting the risk of future T2DM in non-diabetic outpatient populations, validated in both primary and secondary care cohorts. The model enhances T2DM risk prediction and stratification when integrated with traditional risk factors and scores. Its application in primary care settings holds promise for the early identification of individuals at higher risk of T2DM, enabling timely interventions and personalised management.

Conflict of Interest

None
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小盘子完成签到,获得积分10
2秒前
2秒前
脑洞疼应助禾七采纳,获得10
3秒前
无花果应助cloudss采纳,获得10
5秒前
6秒前
SYLH应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
稳重怀寒应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
SYLH应助hkh采纳,获得10
7秒前
zlm1996发布了新的文献求助10
8秒前
ly完成签到 ,获得积分10
10秒前
天将明完成签到 ,获得积分10
11秒前
可乐完成签到,获得积分10
12秒前
CipherSage应助贰萌采纳,获得10
13秒前
14秒前
维生素CCC完成签到 ,获得积分10
14秒前
渣渣完成签到 ,获得积分10
18秒前
YY-Bubble完成签到,获得积分10
19秒前
Hysen_L完成签到,获得积分10
19秒前
cloudss发布了新的文献求助10
20秒前
Leeu完成签到,获得积分10
21秒前
孟浩然关注了科研通微信公众号
22秒前
jijijibibibi完成签到,获得积分10
22秒前
28秒前
qqqyoyoyo完成签到,获得积分10
29秒前
111完成签到,获得积分10
29秒前
lkl完成签到 ,获得积分10
31秒前
qqqyoyoyo发布了新的文献求助10
32秒前
34秒前
cloudss完成签到,获得积分20
34秒前
36秒前
孟浩然发布了新的文献求助10
39秒前
gxz完成签到,获得积分10
42秒前
42秒前
46秒前
意志所向完成签到,获得积分10
47秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
Cycles analytiques complexes I: théorèmes de préparation des cycles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825690
求助须知:如何正确求助?哪些是违规求助? 3367855
关于积分的说明 10448181
捐赠科研通 3087314
什么是DOI,文献DOI怎么找? 1698581
邀请新用户注册赠送积分活动 816841
科研通“疑难数据库(出版商)”最低求助积分说明 769973