224 An actionable, explainable, and biologically plausible AI-ECG risk estimation platform for diabetes mellitus

一致性 生命银行 医学 全基因组关联研究 糖尿病 内科学 生物信息学 基因型 单核苷酸多态性 生物 内分泌学 生物化学 基因
作者
Libor Pastika,Arunashis Sau,Ewa Sieliwończyk,Konstantinos Patlatzoglou,Kathryn A. McGurk,Sadia Khan,Danilo P. Mandic,James S. Ware,Nicholas S. Peters,Daniel B. Kramer,Jonathan W. Waks,Fu Siong Ng
标识
DOI:10.1136/heartjnl-2024-bcs.216
摘要

Background

With the rising incidence of Type 2 Diabetes Mellitus (T2DM) and the number of undiagnosed cases, there is an urgent need for innovative strategies for early identification of individuals at higher risk. To address this, we explore the utility of deep learning applied to 12-lead electrocardiograms (ECGs) for predicting the risk of incident T2DM in non-diabetic individuals, offering a novel approach for early detection and risk stratification.

Methods

The AI-ECG model, developed on the Beth Israel Deaconess Medical Center (BIDMC) dataset of 1.1 million ECGs and externally validated in the UK Biobank (UKB, N = 65,606), employs a residual neural network architecture tailored for a discrete-time survival model. Model performance was evaluated using the concordance index (C-index), and its enhancement of traditional risk factors was assessed via likelihood ratio tests (LRT) and net reclassification index (NRI). We also explored associations with clinical and echocardiographic features through a phenome-wide association study (PheWAS), and with genetic loci through a genome-wide association study (GWAS).

Results

The model predicted future T2DM in non-diabetic outpatient individuals with a C-index of 0.666 (0.658–0.675) in BIDMC and 0.689 (0.663–0.715) in UKB. The model showed consistent performance in both sexes, across ethnic groups, and BMI categories, except for patients aged ≥ 65. An improved performance was noted in individuals aged < 65, with a C-index of 0.691 (0.681, 0.701) and 0.765 (0.730, 0.797) in UKB. Adding the AI-ECG model to age, sex, BMI, and ECG parameters significantly enhanced predictive accuracy in the BIDMC cohort (p < 0.0001). Similarly, adding the model to the American Diabetes Association (ADA) risk score in the UKB substantially improved predictive accuracy (p < 0.0001). The continuous Net Reclassification Improvement (NRI) was 0.30 (0.22–0.40) for the BIDMC and 0.35 (0.21–0.47) for the UKB. The PheWAS and echocardiographic analyses identified significant associations between model predictions and a range of cardiac and non-cardiac phenotypes, including lipid profiles, glycaemic control, blood pressure, as well as echocardiographic measures of cardiac structure and function. This was substantiated by the GWAS study, highlighting genes associated with left ventricular structure, left atrial function, myocardial mass, blood pressure, T2DM, and HbA1C.

Conclusion

We have developed an AI-ECG model capable of predicting the risk of future T2DM in non-diabetic outpatient populations, validated in both primary and secondary care cohorts. The model enhances T2DM risk prediction and stratification when integrated with traditional risk factors and scores. Its application in primary care settings holds promise for the early identification of individuals at higher risk of T2DM, enabling timely interventions and personalised management.

Conflict of Interest

None
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
英俊的铭应助聪明钢铁侠采纳,获得10
1秒前
满满啊完成签到,获得积分10
1秒前
2秒前
2秒前
上官若男应助111采纳,获得10
2秒前
情怀应助火星上的冬云采纳,获得10
2秒前
默默吐司发布了新的文献求助10
3秒前
4秒前
4秒前
高兴的又菡完成签到,获得积分10
4秒前
Jasper应助曦小蕊采纳,获得10
4秒前
4秒前
方法完成签到,获得积分10
5秒前
pups发布了新的文献求助30
6秒前
6秒前
6秒前
酷波er应助生菜采纳,获得10
7秒前
9秒前
Petrichor发布了新的文献求助10
9秒前
why完成签到,获得积分10
9秒前
独孤刘完成签到,获得积分10
9秒前
10秒前
木沐发布了新的文献求助10
10秒前
南宫初兰发布了新的文献求助10
10秒前
无轩发布了新的文献求助10
10秒前
孤月海发布了新的文献求助20
10秒前
丹dan完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
自由的笑容完成签到,获得积分10
11秒前
12秒前
SYLH应助long采纳,获得30
12秒前
搜集达人应助coolplex采纳,获得10
13秒前
852应助不可思宇采纳,获得10
13秒前
why发布了新的文献求助10
13秒前
彪壮的亦瑶完成签到 ,获得积分10
14秒前
didikaka发布了新的文献求助10
14秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049673
求助须知:如何正确求助?哪些是违规求助? 3587651
关于积分的说明 11400138
捐赠科研通 3314082
什么是DOI,文献DOI怎么找? 1823103
邀请新用户注册赠送积分活动 895032
科研通“疑难数据库(出版商)”最低求助积分说明 816663