已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrated model combining BERT and tree-augmented naive Bayes for analyzing risk factors of construction accident

计算机科学 事故(哲学) 朴素贝叶斯分类器 贝叶斯定理 树(集合论) 人工智能 控制论 机器学习 数据挖掘 贝叶斯概率 数学 支持向量机 认识论 数学分析 哲学
作者
Shupeng Liu,Jianhong Shen,Jing Zhang
出处
期刊:Kybernetes [Emerald Publishing Limited]
被引量:1
标识
DOI:10.1108/k-08-2023-1605
摘要

Purpose Learning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured reports, but there are few related studies, and there is a limitation that textual contextual information cannot be considered during extraction, which tends to miss some important factors. Meanwhile, further analysis, assessment and control for the extracted factors are lacking. This paper aims to explore an integrated model that combines the advantages of multiple digital technologies to effectively solve the above problems. Design/methodology/approach A total of 1000 construction accident reports from Chinese government websites were used as the dataset of this paper. After text pre-processing, the risk factors related to accident causes were extracted using KeyBERT, and the accident texts were encoded into structured data. Tree-augmented naive (TAN) Bayes was used to learn the data and construct a visualized risk analysis network for construction accidents. Findings The use of KeyBERT successfully considered the textual contextual information, prompting the extracted risk factors to be more complete. The integrated TAN successfully further explored construction risk factors from multiple perspectives, including the identification of key risk factors, the coupling analysis of risk factors and the troubleshooting method of accident risk source. The area under curve (AUC) value of the model reaches up to 0.938 after 10-fold cross-validation, indicating good performance. Originality/value This paper presents a new machine-assisted integrated model for accident report mining and risk factor analysis, and the research findings can provide theoretical and practical support for accident safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
冰与火发布了新的文献求助10
1秒前
2秒前
王子豪发布了新的文献求助30
3秒前
科目三应助小南瓜采纳,获得10
9秒前
LJ程励完成签到 ,获得积分10
9秒前
刘丰铭完成签到,获得积分10
11秒前
11秒前
在水一方应助冰山泥采纳,获得10
13秒前
九木德发布了新的文献求助10
16秒前
18秒前
20秒前
21秒前
Owen应助proverby采纳,获得10
22秒前
23秒前
轻松的贞完成签到,获得积分10
24秒前
snjzsj发布了新的文献求助20
24秒前
哚圆圆完成签到,获得积分10
24秒前
少一点丶天分完成签到,获得积分10
25秒前
难过含烟发布了新的文献求助10
27秒前
冷静夜蕾完成签到,获得积分10
28秒前
星辰大海应助Said1223采纳,获得10
28秒前
哚圆圆发布了新的文献求助10
28秒前
充电宝应助may采纳,获得10
33秒前
34秒前
35秒前
夏日的极光完成签到,获得积分10
36秒前
Aliaoovo完成签到,获得积分10
37秒前
科研六六完成签到,获得积分20
38秒前
38秒前
愉快洋葱完成签到,获得积分10
38秒前
39秒前
失眠依珊完成签到,获得积分10
40秒前
candice完成签到,获得积分10
40秒前
AlienU发布了新的文献求助10
41秒前
42秒前
幺幺咔完成签到 ,获得积分10
42秒前
43秒前
8R60d8应助九月初五采纳,获得10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
A coordinated control system for truck cabin suspension based on model predictive control 420
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680647
求助须知:如何正确求助?哪些是违规求助? 4056694
关于积分的说明 12543735
捐赠科研通 3751469
什么是DOI,文献DOI怎么找? 2071889
邀请新用户注册赠送积分活动 1101072
科研通“疑难数据库(出版商)”最低求助积分说明 980388