亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An integrated model combining BERT and tree-augmented naive Bayes for analyzing risk factors of construction accident

计算机科学 事故(哲学) 朴素贝叶斯分类器 贝叶斯定理 树(集合论) 人工智能 控制论 机器学习 数据挖掘 贝叶斯概率 数学 支持向量机 认识论 数学分析 哲学
作者
Shupeng Liu,Jianhong Shen,Jing Zhang
出处
期刊:Kybernetes [Emerald (MCB UP)]
被引量:1
标识
DOI:10.1108/k-08-2023-1605
摘要

Purpose Learning from past construction accident reports is critical to reducing their occurrence. Digital technology provides feasibility for extracting risk factors from unstructured reports, but there are few related studies, and there is a limitation that textual contextual information cannot be considered during extraction, which tends to miss some important factors. Meanwhile, further analysis, assessment and control for the extracted factors are lacking. This paper aims to explore an integrated model that combines the advantages of multiple digital technologies to effectively solve the above problems. Design/methodology/approach A total of 1000 construction accident reports from Chinese government websites were used as the dataset of this paper. After text pre-processing, the risk factors related to accident causes were extracted using KeyBERT, and the accident texts were encoded into structured data. Tree-augmented naive (TAN) Bayes was used to learn the data and construct a visualized risk analysis network for construction accidents. Findings The use of KeyBERT successfully considered the textual contextual information, prompting the extracted risk factors to be more complete. The integrated TAN successfully further explored construction risk factors from multiple perspectives, including the identification of key risk factors, the coupling analysis of risk factors and the troubleshooting method of accident risk source. The area under curve (AUC) value of the model reaches up to 0.938 after 10-fold cross-validation, indicating good performance. Originality/value This paper presents a new machine-assisted integrated model for accident report mining and risk factor analysis, and the research findings can provide theoretical and practical support for accident safety management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
19秒前
momo完成签到,获得积分10
23秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
xzy998应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
慕青应助沉醉的中国钵采纳,获得20
2分钟前
whimsyhui完成签到,获得积分20
2分钟前
Yuki完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
牛哥还是强啊完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
sheadenchu发布了新的文献求助10
3分钟前
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
4分钟前
Wang完成签到 ,获得积分20
4分钟前
YifanWang完成签到,获得积分0
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
万能图书馆应助CC采纳,获得30
6分钟前
科目三应助沉醉的中国钵采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
磷酸丙糖异构酶完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助雪山飞龙采纳,获得10
6分钟前
lanxinge完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622291
求助须知:如何正确求助?哪些是违规求助? 4707352
关于积分的说明 14939095
捐赠科研通 4770394
什么是DOI,文献DOI怎么找? 2552301
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475085