The logic profiling of exosomal microRNAs (miRNAs) offers broad potential applications in the accurate diagnosis and staging of cancer. However, the logical detection of low-abundance exosomal miRNAs in complex clinical samples remains challenging. This study introduces a logic analysis system termed "Measurer" (a multi-enzyme-assisted ultrasensitive circuit) that offers ultrasensitive and versatile method for detecting multiple exosomal miRNAs. The Logic-Measurer comprises three modules: a stem-loop hairpin-enhanced CRISPR/Cas13a, a polymerase-driven primer exchange reaction, and an exonuclease III-mediated fluorescence output. The efficient Logic-Measurer was switched by the faster rate of trans-cleavage activity of Cas13a due to its improved affinity for hairpin RNA structures. The mechanistic model of hairpin-enhanced CRISPR/Cas13a was confirmed by molecular dynamics simulations. The Logic-Measurer accurately detected exosomal miRNA-21 or miRNA-375 down to 2.1 and 4.4 fM, with superior specificity, and enabled in situ detection of miRNA-21 and miRNA-375 in as low as 1.4 × 102 particles/mL exosomes via membrane fusion. In addition, this method demonstrated 87.3 and 82.1% accuracy in the diagnosis and early detection of breast cancer, respectively, among a cohort of 315 individuals. Subsequent subgroup analysis further confirmed the method's ability to accurately differentiate estrogen receptor-positive patients from healthy individuals. Therefore, the Logic-Measurer offers valuable insights into the development of a CRISPR/Cas-based enhanced diagnostic platform and the next generation of diagnostic technology based on enzyme circuits.