Integrating zero-knowledge proofs into federated learning: a path to on-chain verifiable and privacy-preserving federated learning frameworks

可验证秘密共享 计算机科学 数学证明 零知识证明 路径(计算) 联合学习 零(语言学) 链条(单位) 理论计算机科学 计算机安全 人工智能 密码学 计算机网络 数学 程序设计语言 语言学 哲学 物理 几何学 集合(抽象数据类型) 天文
作者
Chunlei Li,Zhibo Xing,Jiamou Liu,Giovanni Russello,Zhen Li,Yan Wu,Meng Li,Muhammad Rizwan Asghar
出处
期刊:International Journal of Web Information Systems [Emerald Publishing Limited]
标识
DOI:10.1108/ijwis-01-2025-0024
摘要

Purpose The growing concern over privacy leakage has led to reduced user participation in data sharing, prompting the exploration of novel techniques such as federated learning (FL). Meanwhile, existing FL solutions often overlook the validation of the training process, leaving room for malicious trainers to introduce false or toxic local models, detrimental to the global model’s utility. This study aims to propose a zero-knowledge proof-based verifiable federated learning (ZKP-FL) framework on the blockchain. Design/methodology/approach ZKP-FL leverages zero-knowledge proofs to verify the extensive local training process without threatening the local privacy. To reduce the memory and runtime overhead, the authors divide the training algorithm to be proven into smaller pieces and generating proofs for each segment. The authors leverage sigma-protocol to ensure the consistency and reliability of these proofs. Moreover, they design a secure model aggregation protocol that matches the local proofs, safeguarding the data privacy of individual local models throughout the process. Furthermore, this aggregation protocol can also guarantee the correctness of the aggregation. Findings To establish the effectiveness and security of ZKP-FL, the authors conduct a formal security analysis in terms of completeness, soundness and zero-knowledge properties. Experimental evaluations with different algorithms and models within the ZKP-FL framework demonstrate that with parallel execution the additional proof time per round is minimal. Originality/value This paper offers a novel perspective on security and privacy of FL, providing valuable insights that extend the current understanding of verifiable FL. The findings contribute to the ZKP-FL, highlighting areas for future research and practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶赛文应助野性的沉鱼采纳,获得20
1秒前
牛牛眉目完成签到,获得积分10
3秒前
8秒前
8秒前
谦让的青亦完成签到,获得积分10
8秒前
失眠的书竹完成签到,获得积分10
11秒前
CLL完成签到,获得积分20
13秒前
14秒前
14秒前
17秒前
豪士赋完成签到,获得积分10
18秒前
芽芽乐发布了新的文献求助50
20秒前
25秒前
领导范儿应助取名叫做利采纳,获得10
25秒前
26秒前
Hysen_L完成签到 ,获得积分10
28秒前
29秒前
alice应助於奎采纳,获得10
29秒前
jinjinj完成签到 ,获得积分10
30秒前
qingshan完成签到,获得积分10
31秒前
香蕉觅云应助Yyyyyy11采纳,获得10
31秒前
今后应助自由的寄灵采纳,获得10
32秒前
chellyer发布了新的文献求助10
32秒前
鳗鱼冰巧发布了新的文献求助20
32秒前
科研通AI5应助jayyyyyyy21采纳,获得10
33秒前
33秒前
34秒前
boltos完成签到,获得积分20
34秒前
chellyer完成签到,获得积分10
37秒前
搜集达人应助会笑的花采纳,获得10
38秒前
38秒前
可爱的函函应助potato采纳,获得10
39秒前
害羞便当发布了新的文献求助10
39秒前
40秒前
科研通AI2S应助loaferfdu采纳,获得10
41秒前
楚狂接舆完成签到,获得积分10
41秒前
41秒前
41秒前
自由的沛山完成签到,获得积分10
41秒前
CXS完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781439
求助须知:如何正确求助?哪些是违规求助? 3326986
关于积分的说明 10229130
捐赠科研通 3041907
什么是DOI,文献DOI怎么找? 1669688
邀请新用户注册赠送积分活动 799214
科研通“疑难数据库(出版商)”最低求助积分说明 758757