Defect‐Driven Stepwise Activation of Metal–Organic Frameworks toward Industrial‐Level Anion Exchange Membrane Water Electrolysis

电解 金属有机骨架 离子交换 化学 无机化学 离子 化学工程 电极 有机化学 物理化学 电解质 吸附 生物化学 工程类
作者
Jian Zhou,Shuai Qiu,Xianbiao Hou,Tengjia Ni,Canhui Zhang,Shuixing Dai,X.K. Wang,Guanghui Wang,Heqing Jiang,Minghua Huang
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202503787
摘要

Metal‐organic frameworks (MOFs), featuring well‐defined metal active sites and unique coordination environment, have recently emerged as ideal model catalysts for establishing precise structure‐activity relationships in oxygen evolution reaction (OER). However, elucidating essential catalytic mechanisms responsible for dynamic reaction conditions remain challenging, primarily due to the complicated adsorption behavior and cross‐step transfer of key adsorbates during OER. Herein, we propose a defect‐driven stepwise activation strategy to meticulously control the adsorption behavior for defective Co‐based MOF (termed D/CoFc‐MOF) through tailoring the interplay between local coordination geometry and electronic configuration. Operando characterizations reveal that D/CoFc‐MOF undergoes a unique stepwise activation during OER, progressing from pristine MOF state to intermediate a‐FeOOH state, and ultimately to active CoFeOOH phase, which markedly differs from conventional single‐step surface phase conversion. Theoretical calculations demonstrate that the electronic interaction between the active Co sites and OOH* intermediates of MOF‐derived defective CoFeOOH can be effectively strengthened, thereby overcoming the high reaction barrier and enhancing OER activity. The D/CoFc‐MOF anode, deployed in anion exchange membrane water electrolysis, achieves industrial‐scale current densities of 1 A cm‐2 at 1.69 V and operates stably for 300 h. This approach provides a fundamental insight into designing catalysts prone to dynamic phase transitions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddd完成签到 ,获得积分10
刚刚
1秒前
49发布了新的文献求助10
1秒前
1秒前
1秒前
xx发布了新的文献求助10
1秒前
hhc0713完成签到,获得积分10
2秒前
2秒前
黎乐荷完成签到,获得积分10
2秒前
思源应助謓言采纳,获得10
2秒前
3秒前
靓丽的冰蓝完成签到,获得积分10
3秒前
非洲大象完成签到,获得积分10
3秒前
鲜榨白开水完成签到,获得积分10
4秒前
4秒前
5秒前
tttt发布了新的文献求助10
6秒前
百甲发布了新的文献求助10
6秒前
7秒前
7秒前
oopstom发布了新的文献求助10
8秒前
闾丘博超发布了新的文献求助10
8秒前
彭于彦祖应助蚝油盗梨采纳,获得30
9秒前
小马甲应助Hm采纳,获得10
9秒前
无敌小宽哥完成签到,获得积分10
10秒前
lj发布了新的文献求助10
11秒前
11秒前
蕾丝花边牛爷爷完成签到,获得积分10
12秒前
sxy完成签到,获得积分10
12秒前
科研小麻瓜完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
无花果应助无误采纳,获得10
14秒前
15秒前
xx完成签到,获得积分20
15秒前
Bio应助创新采纳,获得30
16秒前
Xiaoxiao应助白鸽鸽采纳,获得20
16秒前
9Songs发布了新的文献求助10
17秒前
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094419
求助须知:如何正确求助?哪些是违规求助? 3632789
关于积分的说明 11514702
捐赠科研通 3343466
什么是DOI,文献DOI怎么找? 1837620
邀请新用户注册赠送积分活动 905271
科研通“疑难数据库(出版商)”最低求助积分说明 823041