GRLGRN: graph representation-based learning to infer gene regulatory networks from single-cell RNA-seq data

计算生物学 RNA序列 基因调控网络 DNA微阵列 基因 代表(政治) 图形 计算机科学 生物 遗传学 基因表达 理论计算机科学 转录组 政治 政治学 法学
作者
Kai Wang,Yulong Li,Fei Liu,Xiaoli Luan,Xinglong Wang,Jingwen Zhou
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:26 (1) 被引量:1
标识
DOI:10.1186/s12859-025-06116-1
摘要

A gene regulatory network (GRN) is a graph-level representation that describes the regulatory relationships between transcription factors and target genes in cells. The reconstruction of GRNs can help investigate cellular dynamics, drug design, and metabolic systems, and the rapid development of single-cell RNA sequencing (scRNA-seq) technology provides important opportunities while posing significant challenges for reconstructing GRNs. A number of methods for inferring GRNs have been proposed in recent years based on traditional machine learning and deep learning algorithms. However, inferring the GRN from scRNA-seq data remains challenging owing to cellular heterogeneity, measurement noise, and data dropout. In this study, we propose a deep learning model called graph representational learning GRN (GRLGRN) to infer the latent regulatory dependencies between genes based on a prior GRN and data on the profiles of single-cell gene expressions. GRLGRN uses a graph transformer network to extract implicit links from the prior GRN, and encodes the features of genes by using both an adjacency matrix of implicit links and a matrix of the profile of gene expression. Moreover, it uses attention mechanisms to improve feature extraction, and feeds the refined gene embeddings into an output module to infer gene regulatory relationships. To evaluate the performance of GRLGRN, we compared it with prevalent models and performed ablation experiments on seven cell-line datasets with three ground-truth networks. The results showed that GRLGRN achieved the best predictions in AUROC and AUPRC on 78.6% and 80.9% of the datasets, and achieved an average improvement of 7.3% in AUROC and 30.7% in AUPRC. The interpretation discussion and the network visualization were conducted. The experimental results and case studies illustrate the considerable performance of GRLGRN in predicting gene interactions and provide interpretability for the prediction tasks, such as identifying hub genes in the network and uncovering implicit links.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助东方耀采纳,获得10
1秒前
胖丁完成签到,获得积分10
2秒前
童紫槐完成签到,获得积分10
2秒前
2秒前
灵泉完成签到,获得积分10
3秒前
小曹完成签到,获得积分10
3秒前
王智勇发布了新的文献求助10
3秒前
zhishiyumi完成签到,获得积分10
4秒前
现代的南风完成签到 ,获得积分10
4秒前
wanci应助筱静采纳,获得10
5秒前
ww发布了新的文献求助30
5秒前
5秒前
5秒前
6秒前
明理含之发布了新的文献求助60
6秒前
puff完成签到,获得积分10
6秒前
牛顿的苹果完成签到,获得积分10
6秒前
7秒前
7秒前
Ac完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助积极凡阳采纳,获得10
7秒前
NexusExplorer应助JHY采纳,获得10
7秒前
simon完成签到 ,获得积分10
8秒前
8秒前
sunglow11完成签到,获得积分0
8秒前
GeminiWU发布了新的文献求助10
9秒前
Lynnlovelove完成签到,获得积分10
9秒前
9秒前
hqq完成签到,获得积分10
9秒前
轩辕山槐完成签到,获得积分10
9秒前
9秒前
怕孤独的忆南完成签到,获得积分10
9秒前
zhaoyue完成签到 ,获得积分10
10秒前
10秒前
夏春丽发布了新的文献求助20
10秒前
缓慢语雪发布了新的文献求助10
10秒前
演化的蛙鱼完成签到,获得积分10
10秒前
小夏完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067449
求助须知:如何正确求助?哪些是违规求助? 4289266
关于积分的说明 13362795
捐赠科研通 4108762
什么是DOI,文献DOI怎么找? 2249909
邀请新用户注册赠送积分活动 1255368
关于科研通互助平台的介绍 1187865