The Association of Elevated Depression Levels and Life’s Essential 8 on Cardiovascular Health With Predicted Machine Learning Models and Interpretations: Evidence From NHANES 2007–2018

萧条(经济学) 联想(心理学) 全国健康与营养检查调查 心血管健康 老年学 心理学 医学 临床心理学 精神科 内科学 环境卫生 疾病 心理治疗师 经济 人口 宏观经济学
作者
Ze Wu,Pao Xu,Yali Zhai,Jinli Mahe,Kai Guo,Wuraola Olawole,Jiahao Zhu,Jin Han,Guannan Bai,Lin Zhang
出处
期刊:Depression and Anxiety [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/da/8865176
摘要

Background and Objective: The association between depression severity and cardiovascular health (CVH) represented by Life’s Essential 8 (LE8) was analyzed, with a novel focus on ranked levels and different ages. Machine learning (ML) algorithms were also selected aimed at providing predictions to suggest practical recommendations for public awareness and clinical treatment. Methods: We included 21,279 eligible participants from the National Health and Nutrition Examination Survey (NHANES) 2007–2018. Weighted ordinal logistic regression (LR) was utilized with further sensitivity and dose–response analysis, and ML algorithms were analyzed with SHapley Additive exPlanations (SHAP) applied to make interpretable results and visualization. Results: Our studies demonstrated an inverse relationship between LE8 and elevated depressive levels, with robustness confirmed through subgroup and interaction analysis. Age‐specific findings revealed middle‐aged and older adults (aged 40–60 and over 60) which showed higher depresion severity, highlighting the need for greater awareness and targeted interventions. Eight ML algorithms were selected to provide predictive results, and further SHAP would become ideal supplement to increase model interpretability. Conclusions: Our studies demonstrated a negative association between LE8 and elevated depressive levels and provided a suite of ML predictive models, which would generate recommendations toward clinical implications and subjective interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助奂锐123采纳,获得10
2秒前
z_king_d_23发布了新的文献求助10
3秒前
9秒前
科研通AI5应助z_king_d_23采纳,获得10
9秒前
Diana发布了新的文献求助20
10秒前
ricown完成签到,获得积分10
13秒前
吃不完完成签到,获得积分10
13秒前
十文字发布了新的文献求助10
14秒前
15秒前
16秒前
科研通AI5应助用户12306采纳,获得10
16秒前
Versa完成签到,获得积分10
17秒前
20秒前
情怀应助等待的忆文采纳,获得10
20秒前
十文字完成签到,获得积分20
22秒前
满当当发布了新的文献求助10
22秒前
精明的橘子完成签到,获得积分10
22秒前
科研通AI5应助叮叮duang采纳,获得10
23秒前
dzy1317完成签到,获得积分10
24秒前
25秒前
小鲤鱼在睡觉完成签到,获得积分10
26秒前
细腻问柳完成签到 ,获得积分10
26秒前
李爱国应助grass采纳,获得10
26秒前
爆米花应助希格斯玻色子采纳,获得10
27秒前
asnly完成签到 ,获得积分10
28秒前
用户12306发布了新的文献求助10
31秒前
火山羊完成签到,获得积分10
34秒前
你你你完成签到,获得积分10
35秒前
41秒前
TY完成签到 ,获得积分10
42秒前
NexusExplorer应助Olivergaga采纳,获得10
42秒前
47秒前
付小源完成签到,获得积分10
48秒前
50秒前
grass完成签到,获得积分10
51秒前
药药55关注了科研通微信公众号
52秒前
grass发布了新的文献求助10
53秒前
53秒前
55秒前
科研通AI5应助笑点低的靳采纳,获得10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778910
求助须知:如何正确求助?哪些是违规求助? 3324505
关于积分的说明 10218641
捐赠科研通 3039496
什么是DOI,文献DOI怎么找? 1668258
邀请新用户注册赠送积分活动 798634
科研通“疑难数据库(出版商)”最低求助积分说明 758440