Research on bearing fault diagnosis based on ISA-VMD and IMSE

方位(导航) 断层(地质) 地质学 地震学 计算机科学 人工智能
作者
Feng Yan
出处
期刊:Journal of Engineering and Applied Science [Springer Nature]
卷期号:72 (1)
标识
DOI:10.1186/s44147-025-00613-z
摘要

Abstract Aiming at the problems of difficulty in extracting vibration signal features and low recognition accuracy of bearing fault, a new fault diagnosis method based on ISSA-VMD and IMSE was proposed. This method leverages an improved sparrow search algorithm (ISSA) to optimize the variational mode decomposition (VMD) method and employs an improved multiscale sample entropy (IMSE) for fault feature extraction. Initially, the ISSA algorithm optimizes two critical parameters of the VMD method: the number of modes $$K$$ K and the penalty factor $$\alpha$$ α , to obtain the optimal parameter combination $$[K$$ [ K , $$\alpha$$ α ]. The optimized VMD method is then used to decompose the bearing vibration signals for signal reconstruction analysis. Subsequently, the IMSE entropy algorithm is applied to the reconstructed signals to extract fault features, resulting in the required fault feature vector set. Finally, this extracted fault feature vector set is input into a multi-kernel extreme learning machine model for fault classification and diagnosis. The results show that the identification accuracy of the fault diagnosis of reciprocating compressor plain bearings and automobile rolling bearings is significantly improved, and the method has better fault feature extraction effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
邹秋雨完成签到,获得积分20
1秒前
认真初之完成签到,获得积分10
1秒前
1秒前
1秒前
嘿嘿发布了新的文献求助30
1秒前
乔乔兔发布了新的文献求助10
2秒前
小尹完成签到,获得积分10
3秒前
务实的丹南完成签到,获得积分10
3秒前
qing完成签到,获得积分10
3秒前
jacs111完成签到,获得积分10
3秒前
3秒前
舒服的初蓝完成签到,获得积分10
3秒前
jinbo完成签到,获得积分20
4秒前
4秒前
4秒前
爆米花应助蒲蒲采纳,获得10
4秒前
红鸟发布了新的文献求助10
4秒前
4秒前
Tansy2023完成签到,获得积分10
5秒前
85完成签到,获得积分10
5秒前
6秒前
尉迟明风完成签到 ,获得积分10
6秒前
科目三应助小白采纳,获得10
6秒前
滾滾发布了新的文献求助10
6秒前
fangting发布了新的文献求助10
7秒前
jm完成签到,获得积分10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得20
7秒前
7秒前
子车茗应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得30
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
Arml发布了新的文献求助10
8秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816166
求助须知:如何正确求助?哪些是违规求助? 3359723
关于积分的说明 10404224
捐赠科研通 3077544
什么是DOI,文献DOI怎么找? 1690330
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767787