Incorporating end-user perspectives into the development of a machine learning algorithm for first time perinatal depression prediction

计算机科学 萧条(经济学) 算法 机器学习 人工智能 宏观经济学 经济
作者
Kelly Williams,Cara Nikolajski,Samantha N. Rodriguez,Elaine Yuen Ling Kwok,Priya Gopalan,Hyagriv N. Simhan,Tamar Krishnamurti
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocaf086
摘要

Abstract Objective Machine learning algorithms can advance clinical care, including identifying mental health conditions. These algorithms are often developed without considering the perspectives of the affected populations. This study describes the process of incorporating end-user perspectives into the development and implementation planning of a prediction algorithm for new perinatal depression onset. Materials and Methods A focus group (N = 12 providers) and four virtual community engagement studios (N = 21 patients) were conducted. The project team presented on the initial development of a novel prediction algorithm used to detect first time perinatal depression. Rapid qualitative analysis coded the prediction algorithm’s completeness, interpretability, and acceptability to stakeholders, with the goal of informing clinical implementation of a patient-facing screener produced from the prediction algorithm. Results Providers and patients showed consensus on the interpretability of the prediction algorithm’s variables and discussed additional variables believed to be predictive of depression to ensure its completeness. In terms of acceptability, patients expressed a desire to discuss predictive risk screening results with their provider, while providers voiced concerns about limited bandwidth for these discussions. Both groups identified the need for post-screening resource connection but raised concerns over the availability of depression prevention specific resources. Providers and patients reported positively about their engagement in the sessions. Discussion Qualitative findings were incorporated into iterative algorithm development and informed an implementation pilot plan. Conclusion This study demonstrates how the expertise of the end-users of a risk prediction algorithm can be incorporated into its development, which may ultimately increase clinical adoption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆猕猴桃完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
老李猪猪发布了新的文献求助10
3秒前
3秒前
研友_Zr26RZ完成签到,获得积分10
3秒前
领导范儿应助可i因子采纳,获得10
3秒前
4秒前
Jx发布了新的文献求助10
4秒前
5秒前
6秒前
火火完成签到 ,获得积分10
6秒前
风清扬发布了新的文献求助10
7秒前
香蕉觅云应助清脆糖豆采纳,获得10
7秒前
慕青应助t250采纳,获得10
7秒前
7秒前
Ava应助Steve采纳,获得10
7秒前
8秒前
9秒前
宿帅帅完成签到,获得积分10
9秒前
10秒前
张振宇完成签到 ,获得积分10
11秒前
AteeqBaloch发布了新的文献求助10
11秒前
李青秀完成签到,获得积分10
11秒前
Dizzy完成签到,获得积分10
12秒前
李健应助siner采纳,获得10
12秒前
万能图书馆应助柚子采纳,获得10
12秒前
Owen应助老李猪猪采纳,获得10
13秒前
李健的小迷弟应助巴哒采纳,获得10
14秒前
LL发布了新的文献求助10
14秒前
阿郎骑摩的丶完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
风清扬发布了新的文献求助10
17秒前
18秒前
Akim应助Haibrar采纳,获得20
19秒前
20秒前
orixero应助虚幻的小馒头采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
An account of the genus Dioscorea in the East, Part 2. The species which twine to the right 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4267630
求助须知:如何正确求助?哪些是违规求助? 3799080
关于积分的说明 11908057
捐赠科研通 3445720
什么是DOI,文献DOI怎么找? 1890421
邀请新用户注册赠送积分活动 941154
科研通“疑难数据库(出版商)”最低求助积分说明 845488