Unveiling Hidden Health Risks: Machine Learning Enhanced Modeling of Plastic Additive Release Kinetics in Fresh Produce Packaging

动力学 计算机科学 环境科学 化学 食品科学 生物系统 生化工程 工程类 生物 物理 量子力学
作者
Baojun Ding,Fangfang Yang,Wenjing Han,Z. J. Xiao,Qing Xie,Huaijun Xie,Jingwen Chen
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (24): 12268-12278 被引量:1
标识
DOI:10.1021/acs.est.5c02821
摘要

Fresh produce packaging (FPP) plays a critical role in protecting fruits and vegetables from various environmental factors. However, the presence, migration, and human health risks of additives in FPP have received limited attention. This study investigated 73 commonly used additives across six categories of FPP samples collected in China. A Weibull model combined with machine learning techniques was used to assess the migration of these additives into fruits and vegetables. A total of 43 additives were identified in the FPP samples, with concentrations ranging from 1.52 × 103 to 2.51 × 106 ng/g. Notably, non-phthalate plasticizers (NPPs) were found to be the most prevalent additive group. The migration ratio of additives varied from 10.5% to complete migration, influenced by factors including the molecular structure of the additives, FPP material composition, and temperature. Additives in foamed packaging exhibited the fastest migration rates and the highest migration ratios. Estimates of daily intake indicated that 2-ethylhexanoic acid (EHA) and triethyl phosphate (TEP) migrating from the FPP can pose significant health risks. These findings highlight a crucial source of health risks to humans and underscore the urgent need for the controlled and scientifically informed incorporation of additives in plastic products in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
明亮的涵山完成签到,获得积分20
2秒前
听雨完成签到 ,获得积分10
2秒前
2秒前
yy完成签到 ,获得积分10
4秒前
浮游应助Tian0118采纳,获得10
4秒前
隐形曼青应助Jojo采纳,获得10
5秒前
5秒前
5秒前
hellosci666发布了新的文献求助10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
慕青应助Young_kristine采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得100
5秒前
修仙中应助科研通管家采纳,获得10
5秒前
修仙中应助科研通管家采纳,获得10
6秒前
彭于彦祖应助科研通管家采纳,获得200
6秒前
大个应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Hilda007应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
修仙中应助科研通管家采纳,获得20
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
常常完成签到,获得积分10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
重要的水壶完成签到,获得积分10
6秒前
bluntzhang发布了新的文献求助10
8秒前
kirin发布了新的文献求助10
8秒前
谨慎建辉发布了新的文献求助10
8秒前
充电宝应助明亮的涵山采纳,获得10
8秒前
8秒前
9秒前
9秒前
领导范儿应助和其正采纳,获得10
9秒前
10秒前
SiHui_Zhuo发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287680
求助须知:如何正确求助?哪些是违规求助? 4439796
关于积分的说明 13823033
捐赠科研通 4321964
什么是DOI,文献DOI怎么找? 2372222
邀请新用户注册赠送积分活动 1367807
关于科研通互助平台的介绍 1331322