ShieldDFL: A Blockchain-Based Federated Learning Framework With Dual Privacy Protection and Reputation-Driven Consensus

块链 计算机科学 声誉 对偶(语法数字) 计算机安全 信息隐私 隐私保护 互联网隐私 政治学 文学类 艺术 法学
作者
Yali Cai,Xuetao Du,Chen Zhang,Meilun Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:13: 103931-103943
标识
DOI:10.1109/access.2025.3576261
摘要

In the industrial Internet of Things (IIoT) scenarios, federated learning (FL) provides a privacy-preserving solution for utilizing industrial data. At the same time, blockchain integration enhances trustworthiness in federated learning training. However, existing blockchain-based FL frameworks still face several critical challenges: 1) Current consensus mechanisms lack effective filtering of malicious devices, allowing low-quality participants to interfere with global model training and compromise model robustness; 2) Existing privacy budget strategies are overly simplistic, making it difficult to balance privacy protection between statistical queries and gradient updates—strong privacy protection reduces model accuracy, while weak protection fails to defend against poisoning attacks. To address these challenges, this paper proposes a blockchain-based federated learning framework with dual privacy protection and reputation-driven consensus, called ShieldDFL. This approach employs a hybrid consensus mechanism driven by LSTM-based reputation scoring to dynamically evaluate both short-term and long-term device contributions, enabling the precise selection of high-quality devices. At the same time, it introduces an innovative dual privacy budget mechanism that applies differential privacy separately to statistical queries and gradient updates, ensuring robust privacy protection while maintaining high model performance. Experimental results on the MNIST and CIFAR-10 datasets show that the proposed method reduces the probability of malicious devices entering the consensus pool to 1.5%, lowers the success rates of SAR and BASR attacks to 5.8% and 2.1% respectively, while maintaining high model accuracy of 98.1% on MNIST and 87.6% on CIFAR-10. Overall, the proposed framework effectively breaks through the security and privacy bottlenecks of blockchain-based federated learning, providing an efficient and scalable solution for decentralized and trustworthy collab-oration in IIoT scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
祁灵枫发布了新的文献求助10
1秒前
江江小菜鸡完成签到,获得积分10
1秒前
NSS发布了新的文献求助10
2秒前
2秒前
Vic发布了新的文献求助10
3秒前
mumu完成签到 ,获得积分10
3秒前
赘婿应助微光熠采纳,获得10
3秒前
孙友浩发布了新的文献求助10
4秒前
Owen应助xiaowang采纳,获得10
5秒前
5秒前
大模型应助江江小菜鸡采纳,获得10
5秒前
6秒前
lyx发布了新的文献求助10
6秒前
6秒前
隐形曼青应助hhxhhx采纳,获得10
6秒前
sleeping发布了新的文献求助10
6秒前
zzk完成签到,获得积分10
7秒前
blue2021发布了新的文献求助30
8秒前
8秒前
zhu完成签到,获得积分10
9秒前
giserone发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
科研通AI6应助狂野的山菡采纳,获得20
11秒前
11秒前
11秒前
叶问夏发布了新的文献求助10
11秒前
斗罗大陆完成签到,获得积分10
11秒前
火山发布了新的文献求助10
12秒前
AXLL发布了新的文献求助10
12秒前
wenqin发布了新的文献求助20
13秒前
JamesPei应助suyk采纳,获得10
13秒前
13秒前
lyx完成签到,获得积分10
14秒前
孙友浩发布了新的文献求助10
14秒前
ju00发布了新的文献求助10
14秒前
念一发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554346
求助须知:如何正确求助?哪些是违规求助? 4638877
关于积分的说明 14654484
捐赠科研通 4580637
什么是DOI,文献DOI怎么找? 2512417
邀请新用户注册赠送积分活动 1487207
关于科研通互助平台的介绍 1458076