Three-Dimensional Bioprinting of Biphasic Nanobioink for Enhanced Diabetic Wound Healing

伤口愈合 3D生物打印 材料科学 生物医学工程 纳米技术 医学 组织工程 外科
作者
Chenlong Wang,S. M. Shatil Shahriar,Yajuan Su,Farzad Hayati,Syed Muntazir Andrabi,Yizhu Xiao,Milton E. Busquets,Navatha Shree Sharma,Jingwei Xie
出处
期刊:ACS Nano [American Chemical Society]
卷期号:19 (23): 21411-21425 被引量:4
标识
DOI:10.1021/acsnano.5c01832
摘要

The healing of chronic diabetic wounds remains a major healthcare problem due to their inherently hypoxic microenvironment, which results from vascular damage and increased tissue oxygen demand, severely limiting adenosine triphosphate (ATP) production and impairing the healing process. Ensuring both oxygen supply and ATP delivery presents a significant challenge due to markedly different diffusion rates of gases and energy-carrying molecules complicating synchronized and sustained delivery. To tackle this challenge, we report a three-dimensional (3D) bioprinted gelatin methacrylate (GelMA)/alginate construct with a coaxial structure, incorporating biphasic bioinks containing oxygen-generating calcium peroxide (CaO2) nanoparticles and ATP-releasing liposomes. This construct features an inner layer containing CaO2 nanoparticles for sustained oxygen release and an outer layer with ATP-encapsulated liposomes to provide cellular energy. By balancing the fast gas release with the slow ATP diffusion, our scaffold enhances cell proliferation and viability under hypoxic conditions, effectively accelerating diabetic wound healing in a type II diabetic mouse model. This work not only provides a strategic approach for designing scaffolds requiring controlled delivery of multiple molecules but also offers an effective intervention for chronic wound healing. Our coaxial bioprinting approach fundamentally differs from traditional blending techniques by offering precise spatial control over distinct therapeutic agents, ensuring optimized synchronized release kinetics. Unlike conventional strategies that lack accurate spatiotemporal coordination, our scaffold effectively aligns oxygen and ATP delivery profiles with cellular metabolic demands, significantly enhancing therapeutic efficacy. This coaxial printing strategy offers significant potential for expanding the delivery of a wider range of nanomaterials, enabling the development of multifunctional, responsive systems with precise control over each therapeutic delivery, thereby driving progress in regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sand发布了新的文献求助10
刚刚
1145发布了新的文献求助10
1秒前
水123发布了新的文献求助10
1秒前
斯文败类应助粒粒采纳,获得10
1秒前
fanglihua发布了新的文献求助10
2秒前
善学以致用应助刘老师采纳,获得10
2秒前
爱笑的映阳完成签到,获得积分10
2秒前
2秒前
聪仔发布了新的文献求助10
2秒前
也子发布了新的文献求助20
3秒前
xx完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
8秒前
科目三应助暴躁的信封采纳,获得10
8秒前
8秒前
星河在眼里完成签到,获得积分10
8秒前
小蘑菇应助Christina采纳,获得10
10秒前
粒粒完成签到,获得积分10
10秒前
情怀应助Iris采纳,获得10
11秒前
ddy发布了新的文献求助10
12秒前
粒粒发布了新的文献求助10
13秒前
14秒前
茉莉发布了新的文献求助10
14秒前
严yee发布了新的文献求助10
14秒前
爆米花应助yzj采纳,获得10
15秒前
曾阿牛发布了新的文献求助10
15秒前
852应助11采纳,获得10
15秒前
15秒前
yj发布了新的文献求助10
15秒前
15秒前
jackeyxu完成签到 ,获得积分10
16秒前
科研通AI6应助Sand采纳,获得10
16秒前
我是老大应助Gandiva采纳,获得10
16秒前
七页禾完成签到,获得积分10
17秒前
19秒前
舒适的梦玉完成签到,获得积分10
20秒前
徐蹇发布了新的文献求助10
20秒前
bobo完成签到,获得积分10
20秒前
李琦完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599168
求助须知:如何正确求助?哪些是违规求助? 4684646
关于积分的说明 14835836
捐赠科研通 4666419
什么是DOI,文献DOI怎么找? 2537770
邀请新用户注册赠送积分活动 1505181
关于科研通互助平台的介绍 1470728