亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DPLS-SLAM: a visual SLAM system based on point-line feature fusion and lightweight improved YOLOv8seg network in dynamic environment

特征(语言学) 计算机科学 人工智能 计算机视觉 直线(几何图形) 同时定位和映射 点(几何) 融合 机器人 数学 移动机器人 哲学 几何学 语言学
作者
B. H. Xiang,Du Jiang,Juntong Yun,Li Huang,Yuanmin Xie,Ying Sun
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ade55c
摘要

Abstract Simultaneous Localization and Mapping (SLAM) is a core technology for the autonomous positioning and navigation of intelligent mobile robots. Dynamic SLAM has the problem of an insufficient number of features after removing dynamic point features, which leads to lower accuracy of pose estimation. Meanwhile, the time consumption of dynamic target detection based on deep learning is huge, which limits the practical application of dynamic SLAM algorithms in practice. To address the above problems, we proposed a dynamic point-line SLAM system (DPLS-SLAM) based on point-line feature fusion and lightweight improved YOLOv8seg instance segmentation network. The improved EDLines algorithm is used to extract high-quality line features, and a spatial consistency verification model is introduced, which uses RANSAC to fit 3D line equations and combines with Gaussian model to correct the line feature depth outliers, effectively solving the problem of the inconsistency between the depth recovery of line features and the scene texture. Secondly, a lightweight improved YOLOv8seg instance segmentation network is proposed to provide real-time semantic labels and object masks for dynamic object detection by reconfiguring the backbone network via EfficientNetV2 and adding a lightweight attention mechanism, which improves the inference speed with little change in accuracy. In addition, an adaptive weighted projection error model fusing line direction and distance information is constructed and combined with optical flow tracking to optimize the line feature matching efficiency. Experimental results on the TUM RGB-D dataset and real dynamic environments show that DPLS-SLAM outperforms existing dynamic SLAM solutions in both positioning accuracy and real-time performance. Compared with ORB-SLAM3, the absolute trajectory error is reduced by up to 94.35%, and the relative pose error is also reduced, verifying its effectiveness and robustness in dynamic environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Soleil发布了新的文献求助10
1秒前
脑洞疼应助bzg采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
香蕉觅云应助猪猪采纳,获得10
14秒前
轻松的惜芹完成签到 ,获得积分10
27秒前
30秒前
bzg发布了新的文献求助10
37秒前
yuwen发布了新的文献求助10
45秒前
文献菜鸟发布了新的文献求助10
50秒前
56秒前
abull完成签到,获得积分10
56秒前
59秒前
1分钟前
JamesPei应助等待的松鼠采纳,获得10
1分钟前
1分钟前
bzg完成签到,获得积分10
1分钟前
Jero完成签到 ,获得积分10
1分钟前
猪猪发布了新的文献求助10
1分钟前
guan发布了新的文献求助10
1分钟前
杰尼龟完成签到,获得积分10
1分钟前
文献菜鸟发布了新的文献求助10
1分钟前
Magali发布了新的文献求助10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
Dritsw应助科研通管家采纳,获得10
1分钟前
Dritsw应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
所所应助杨惠子采纳,获得10
2分钟前
xsy完成签到 ,获得积分10
2分钟前
2分钟前
zoro完成签到,获得积分10
2分钟前
杨惠子发布了新的文献求助10
2分钟前
bc应助33333采纳,获得30
2分钟前
小白鸽完成签到,获得积分10
3分钟前
猪猪完成签到,获得积分10
3分钟前
3分钟前
bai123发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
cheng完成签到 ,获得积分10
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972713
求助须知:如何正确求助?哪些是违规求助? 3517023
关于积分的说明 11186099
捐赠科研通 3252489
什么是DOI,文献DOI怎么找? 1796477
邀请新用户注册赠送积分活动 876447
科研通“疑难数据库(出版商)”最低求助积分说明 805629