AER U-Net: attention-enhanced multi-scale residual U-Net structure for water body segmentation using Sentinel-2 satellite images

网(多面体) 残余物 卫星 分割 水体 比例(比率) 卫星图像 计算机科学 人工智能 环境科学 遥感 地图学 地质学 地理 算法 数学 工程类 环境工程 几何学 航空航天工程
作者
Naga Surekha Jonnala,Shaik Siraaj,Y Prastuti,P Chinnababu,Bincy Babu,Shonak Bansal,P. Upadhyaya,Krishna Prakash,Mohammad Rashed Iqbal Faruque,K.S. Almugren
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:2
标识
DOI:10.1038/s41598-025-99322-z
摘要

The automatic segmentation of water bodies from remote-sensing satellite images offers valuable insights into water resource management, flood monitoring, environmental changes, and urban development. However, extracting water bodies from satellite imagery can be challenging due to factors such as varying water body shapes, diverse environmental conditions, cloud cover, and shadows. These difficulties have a significant impact on waterbody segmentation, particularly in precisely maintaining high-quality segmented images and determining the boundaries of waterbodies. To overcome these issues, researchers have introduced several approaches; however, they suffer from precisely identifying the boundaries of waterbodies due to their irregular shapes. This difficulty is particularly pronounced in traditional threshold-based and machine-learning techniques, which often struggle to achieve accurate segmentation when confronted with complex structures, cluttered backgrounds, or objects of varying sizes and shapes. The objective of this research is to develop innovative deep-learning (DL) approaches to address these challenges and enhance the accuracy of waterbody segmentation in Remote sensing applications. This research introduces a deep learning model, namely AER U-Net architecture, which integrates advanced architectural elements into U-Net, such as residual blocks, self-attention mechanisms, and dropout layer, due to which the model significantly enhances segmentation accuracy and generalization capability. The architecture employs a contracting path consisting of convolutional layers, batch normalization, and activation layers to extract multi-scale features. Residual blocks improve feature learning efficiency while addressing the vanishing gradient issue through the inclusion of skip connections. Dropout layers in the encoder and bottleneck paths are incorporated for regularization, reducing the risk of overfitting. Additionally, the attention mechanism ensures precise refinement of skip connections, further improving segmentation performance. The model is trained using the Adam optimizer combined with a binary cross-entropy loss function, making it highly effective for binary segmentation tasks with an IoU score of 0.94, highlighting its effectiveness for practical environmental applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean应助科研通管家采纳,获得50
刚刚
8R60d8应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
刚刚
8R60d8应助科研通管家采纳,获得10
1秒前
Dean应助科研通管家采纳,获得100
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
专注的玉米完成签到 ,获得积分10
1秒前
Shaineli完成签到,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助150
4秒前
安详灵安完成签到,获得积分10
4秒前
5秒前
烟花应助魔幻的冬寒采纳,获得10
7秒前
木木发布了新的文献求助10
8秒前
小蘑菇应助英俊冰蝶采纳,获得10
8秒前
池鱼发布了新的文献求助10
10秒前
11秒前
哈士奇野猪完成签到,获得积分10
13秒前
14秒前
动点子智慧完成签到,获得积分10
14秒前
高贵的冰旋完成签到 ,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
dd发布了新的文献求助10
16秒前
17秒前
小蘑菇应助孔孔孔采纳,获得10
19秒前
科研通AI6应助666采纳,获得10
19秒前
20秒前
甜蜜花发布了新的文献求助10
22秒前
22秒前
完美星落完成签到,获得积分10
22秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850173
求助须知:如何正确求助?哪些是违规求助? 4149542
关于积分的说明 12854173
捐赠科研通 3896928
什么是DOI,文献DOI怎么找? 2141955
邀请新用户注册赠送积分活动 1161473
关于科研通互助平台的介绍 1061391