亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Molecular Modelling in Bioactive Peptide Discovery and Characterisation

计算生物学 化学 生物 生物化学
作者
Clement Agoni,Raúl Fernández-Díaz,Patrick Brendan Timmons,Alessandro Adelfio,Hansel Gómez,Denis C. Shields
出处
期刊:Biomolecules [MDPI AG]
卷期号:15 (4): 524-524 被引量:13
标识
DOI:10.3390/biom15040524
摘要

Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide–protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Weiyu完成签到 ,获得积分10
刚刚
刚刚
CodeCraft应助重要青柏采纳,获得10
7秒前
朴素豪发布了新的文献求助10
7秒前
正宗完成签到,获得积分10
9秒前
短短急个球完成签到,获得积分10
10秒前
Karry发布了新的文献求助10
13秒前
18秒前
科研通AI6应助科研通管家采纳,获得30
19秒前
19秒前
科研通AI6应助科研通管家采纳,获得30
19秒前
19秒前
19秒前
Orange应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
19秒前
深情安青应助小橘采纳,获得10
19秒前
21秒前
link发布了新的文献求助10
22秒前
传奇3应助fuyaoye2010采纳,获得10
23秒前
Thanks完成签到 ,获得积分10
28秒前
30秒前
joysa完成签到,获得积分10
30秒前
33秒前
小橘发布了新的文献求助10
34秒前
cc完成签到,获得积分20
39秒前
充电宝应助读书的时候采纳,获得150
43秒前
45秒前
香蕉觅云应助seapowerseries采纳,获得10
46秒前
seun发布了新的文献求助10
48秒前
漂亮夏兰完成签到 ,获得积分10
49秒前
51秒前
lili发布了新的文献求助10
51秒前
科目三应助qq78910采纳,获得10
52秒前
54秒前
chaos发布了新的文献求助10
56秒前
57秒前
LucyMartinez发布了新的文献求助10
59秒前
雪白傲薇发布了新的文献求助10
1分钟前
李爱国应助爱撒娇的文博采纳,获得10
1分钟前
CipherSage应助pan采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739072
求助须知:如何正确求助?哪些是违规求助? 5383387
关于积分的说明 15339336
捐赠科研通 4881805
什么是DOI,文献DOI怎么找? 2623944
邀请新用户注册赠送积分活动 1572618
关于科研通互助平台的介绍 1529382