胶质瘤
异柠檬酸脱氢酶
多形性黄色星形细胞瘤
生物
免疫系统
肿瘤微环境
转录组
免疫疗法
IDH1
小胶质细胞
糖组学
癌症研究
CD33
蛋白质组学
免疫学
星形细胞瘤
干细胞
突变体
炎症
基因
基因表达
酶
生物化学
遗传学
川地34
作者
Hadeesha Piyadasa,Benjamin Oberlton,Mikaela Ribi,Jolene S. Ranek,Inna Averbukh,Ke Xuan Leow,Meelad Amouzgar,Candace C. Liu,Noah F. Greenwald,Erin McCaffrey,Rashmi Kumar,Selena Ferrian,Albert G. Tsai,Ferda Filiz,Christine Camacho Fullaway,Marc Bossé,Sricharan Reddy Varra,Alex Kong,C. H. Sowers,Melanie Hayden Gephart
标识
DOI:10.1101/2025.03.12.642624
摘要
Abstract Gliomas are among the most lethal cancers, with limited treatment options. To uncover hallmarks of therapeutic escape and tumor microenvironment (TME) evolution, we applied spatial proteomics, transcriptomics, and glycomics to 670 lesions from 310 adult and pediatric patients. Single-cell analysis shows high B7H3+ tumor cell prevalence in glioblastoma (GBM) and pleomorphic xanthoastrocytoma (PXA), while most gliomas, including pediatric cases, express targetable tumor antigens in less than 50% of tumor cells, potentially explaining trial failures. Longitudinal samples of isocitrate dehydrogenase (IDH)-mutant gliomas reveal recurrence driven by tumor-immune spatial reorganization, shifting from T-cell and vasculature-associated myeloid cell-enriched niches to microglia and CD206+ macrophage-dominated tumors. Multi-omic integration identified N-glycosylation as the best classifier of grade, while the immune transcriptome best predicted GBM survival. Provided as a community resource, this study opens new avenues for glioma targeting, classification, outcome prediction, and a baseline of TME composition across all stages.
科研通智能强力驱动
Strongly Powered by AbleSci AI