Engineering the reversible redox electrochemistry on cuprous oxide for efficient chloride ion uptake

氧化还原 电化学 离子 氯化物 氧化物 无机化学 化学 氧化还原 材料科学 电极 生物化学 有机化学 物理化学
作者
Songhe Yang,Xiaosong Gu,Xuezhen Feng,Ranhao Wang,Xiang-Yang Lou,Wenfei Wei,Hong Chen
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-025-57605-z
摘要

To address the dual challenges of freshwater scarcity and energy storage demands, battery deionization has emerged as a promising technology for simultaneous salt removal and energy recovery. Compared to the significant research advancement in cation-storage electrodes, anion-storage counterparts remain a critical bottleneck thus limiting the industrialization of battery deionization technique. Here, we employ Cu2O as a Cl− storage electrode material, by engineering the electrochemical-driven reversible synthesis-decomposition process between Cu2O and Cu2(OH)3Cl, the Cu2O electrode delivers the state-of-the-art high charge capacity of 286.3 ± 8.1 mAh g−1 and Cl− storage capacity of 203.5 ± 21.3 mg g−1 in natural seawater. Ex-situ liquid cell electrochemical transmission electron microscopy and in-situ powder X-ray diffraction unveil a continuous and spatial confirmed electrochemical-driven electrode oxidation, spatial migration and crystallization mechanism engaged in the reversible structural transformation between Cu2O and Cu2(OH)3Cl during battery deionization process. This work not only introduces a highly efficient electrode material for Cl− removal but also establishes a basis for leveraging the electrochemical-driven reversible synthesis-decomposition process and spatial confinement reversible structural transformation mechanism to design advanced electrode materials for diverse ion removal applications. Battery deionization is an emerging technology, with anion storage materials underexplored. Here, authors report Cu2O as a chloride anion storage electrode material with a reversible transformation between Cu2O and Cu2(OH)3Cl and demonstrate application to saltwater deionization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈哈完成签到 ,获得积分10
1秒前
1秒前
1秒前
swaggiezhrg完成签到,获得积分10
1秒前
yuqiu发布了新的文献求助30
4秒前
所所应助青衫采纳,获得10
8秒前
wanci应助青衫采纳,获得10
8秒前
榴莲姑娘发布了新的文献求助10
8秒前
月绛完成签到,获得积分10
8秒前
8秒前
Lucas应助健壮的黑猫采纳,获得10
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
烟花应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
ED应助科研通管家采纳,获得30
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
tuihuo发布了新的文献求助10
13秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
田様应助科研通管家采纳,获得10
14秒前
嘻嘻哈哈应助科研通管家采纳,获得10
14秒前
在水一方应助科研通管家采纳,获得10
14秒前
不配.应助科研通管家采纳,获得20
14秒前
xzy998应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
天狮星上的人完成签到,获得积分10
16秒前
17秒前
17秒前
不配.应助忐忑的白枫采纳,获得50
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4259982
求助须知:如何正确求助?哪些是违规求助? 3792742
关于积分的说明 11896072
捐赠科研通 3440473
什么是DOI,文献DOI怎么找? 1888166
邀请新用户注册赠送积分活动 938908
科研通“疑难数据库(出版商)”最低求助积分说明 844341