Engineering the reversible redox electrochemistry on cuprous oxide for efficient chloride ion uptake

氧化还原 电化学 离子 氯化物 氧化物 无机化学 化学 氧化还原 材料科学 电极 生物化学 有机化学 物理化学
作者
Songhe Yang,Xiaosong Gu,Xuezhen Feng,Ranhao Wang,Xiang-Yang Lou,Wenfei Wei,Hong Chen
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1) 被引量:3
标识
DOI:10.1038/s41467-025-57605-z
摘要

To address the dual challenges of freshwater scarcity and energy storage demands, battery deionization has emerged as a promising technology for simultaneous salt removal and energy recovery. Compared to the significant research advancement in cation-storage electrodes, anion-storage counterparts remain a critical bottleneck thus limiting the industrialization of battery deionization technique. Here, we employ Cu2O as a Cl− storage electrode material, by engineering the electrochemical-driven reversible synthesis-decomposition process between Cu2O and Cu2(OH)3Cl, the Cu2O electrode delivers the state-of-the-art high charge capacity of 286.3 ± 8.1 mAh g−1 and Cl− storage capacity of 203.5 ± 21.3 mg g−1 in natural seawater. Ex-situ liquid cell electrochemical transmission electron microscopy and in-situ powder X-ray diffraction unveil a continuous and spatial confirmed electrochemical-driven electrode oxidation, spatial migration and crystallization mechanism engaged in the reversible structural transformation between Cu2O and Cu2(OH)3Cl during battery deionization process. This work not only introduces a highly efficient electrode material for Cl− removal but also establishes a basis for leveraging the electrochemical-driven reversible synthesis-decomposition process and spatial confinement reversible structural transformation mechanism to design advanced electrode materials for diverse ion removal applications. Battery deionization is an emerging technology, with anion storage materials underexplored. Here, authors report Cu2O as a chloride anion storage electrode material with a reversible transformation between Cu2O and Cu2(OH)3Cl and demonstrate application to saltwater deionization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
雨姐科研应助乔钰涵采纳,获得10
3秒前
gengen应助乔钰涵采纳,获得10
3秒前
3秒前
科目三应助乔钰涵采纳,获得10
3秒前
思源应助乔钰涵采纳,获得10
3秒前
墨客应助乔钰涵采纳,获得10
3秒前
xxhh33发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
7秒前
慕青应助哈哈采纳,获得10
8秒前
JamesPei应助xdc采纳,获得10
8秒前
Elsa完成签到,获得积分10
8秒前
妩媚的海应助junze采纳,获得10
11秒前
石磊完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
369138190应助热情碧凡采纳,获得30
13秒前
13秒前
14秒前
15秒前
哈哈哈发布了新的文献求助10
17秒前
小二郎应助学术laji采纳,获得10
19秒前
sunburst发布了新的文献求助30
20秒前
20秒前
21秒前
21秒前
超级盼烟发布了新的文献求助10
21秒前
Akim应助xxhh33采纳,获得10
22秒前
24秒前
24秒前
24秒前
烟花应助小李采纳,获得10
26秒前
想吃脆脆完成签到,获得积分10
26秒前
JamesPei应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532595
求助须知:如何正确求助?哪些是违规求助? 4621358
关于积分的说明 14577575
捐赠科研通 4561156
什么是DOI,文献DOI怎么找? 2499216
邀请新用户注册赠送积分活动 1479159
关于科研通互助平台的介绍 1450389